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Abstract

Aims/hypothesis Elevated levels of fasting glucose and fasting
insulin in non-diabetic individuals are markers of dysregula-
tion of glucose metabolism and are strong risk factors for type
2 diabetes. Genome-wide association studies have discovered
over 50 SNPs associated with these traits. Most of these loci
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were discovered in European populations and have not been
tested in a well-powered multi-ethnic study. We hypothesised
that a large, ancestrally diverse, fine-mapping genetic study of
glycaemic traits would identify novel and population-specific
associations that were previously undetectable by European-
centric studies.
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Methods A multiethnic study of up to 26,760 unrelated indi-
viduals without diabetes, of predominantly Hispanic/Latino
and African ancestries, were genotyped using the
Metabochip. Transethnic meta-analysis of racial/ethnic-
specific linear regression analyses were performed for fasting
glucose and fasting insulin. We attempted to replicate 39
fasting glucose and 17 fasting insulin loci. Genetic fine-
mapping was performed through sequential conditional
analyses in 15 regions that included both the initially reported
SNP association(s) and denser coverage of SNP markers. In
addition, Metabochip-wide analyses were performed to dis-
cover novel fasting glucose and fasting insulin loci. The most
significant SNP associations were further examined using bio-
informatic functional annotation.

Results Previously reported SNP associations were signifi-
cantly replicated (p < 0.05) in 31/39 fasting glucose loci and
14/17 fasting insulin loci. Eleven glycaemic trait loci were
refined to a smaller list of potentially causal variants through
transethnic meta-analysis. Stepwise conditional analysis iden-
tified two loci with independent secondary signals (G6PC2-
15477224 and GCK-1s2908290), which had not previously
been reported. Population-specific conditional analyses iden-
tified an independent signal in G6PC2 tagged by the rare
variant rs77719485 in African ancestry. Further Metabochip-
wide analysis uncovered one novel fasting insulin locus at
SLCI7A2-1s75862513.

Conclusions/interpretation These findings suggest that while
glycaemic trait loci often have generalisable effects across the
studied populations, transethnic genetic studies help to
prioritise likely functional SNPs, identify novel associations
that may be population-specific and in turn have the potential
to influence screening efforts or therapeutic discoveries.
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Abbreviations

AA African ancestry

AFR African ancestry (1000 Genomes Super
Population Code)

AI/AN American Indian/Alaskan Native

AMR Admixed American ancestry (1000 Genomes
Super Population Code)

ARIC Atherosclerosis Risk in Communities

ASN Asian and Pacific Islander

CARDIA Coronary Artery Risk Development in Young
Adults

CEU Utah Residents (CEPH) with Northern and
Western European Ancestry (HapMap
Population Code)

EUR European ancestry (1000 Genomes Super
Population Code)

GWAS Genome-wide association studies

HCHS/SOL  Hispanic Community Health Study/Study
of Latinos

H/L Hispanic/Latino

MAF Minor allele frequency

MAGIC Meta-Analyses of Glucose and Insulin-
related traits

MEC The Multiethnic Cohort

NHGRI National Human Genome Research Institute

PAGE Population Architecture using Genetic
Epidemiology

SHARe WHI SNP Health Association Resource

WHI Women’s Health Initiative

Introduction

Type 2 diabetes is a growing epidemic that disproportionally
burdens US minority populations [1]. Elevated levels of
fasting glucose and fasting insulin in individuals without dia-
betes are markers of dysregulated glucose metabolism and are
strong risk factors for type 2 diabetes [2]. Although twin and
family studies provide heritability estimates of 10-50% for
these traits [3, 4], family-based linkage studies have been
largely unsuccessful in identifying specific contributing loci.
Genome-wide association studies (GWAS) greatly accelerated
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the pace of discovery of genetic variants contributing to
glycaemic traits. For example, the Meta-Analyses of
Glucose and Insulin-related traits (MAGIC) consortium per-
formed a large-scale investigation of glycaemic traits in indi-
viduals of European descent without diabetes and identified
24 fasting glucose loci and eight fasting insulin loci, three of
which were associated with both traits [5, 6]. These findings
have implicated genes and pathways known to be related to
glucose metabolism (e.g. GCK/G6PC2 and glucose dephos-
phorylation), as well as novel pathways (e.g. MTNRIB and
circadian rhythmicity). However, in some instances, the inter-
pretation of GWAS findings has been challenging. For in-
stance, many of the known loci are positioned in non-coding,
putative regulatory regions of the genome, which in turn
makes it difficult to identify the gene target(s). Additionally,
the most significant variant is often not the causal variant but
is a correlated variant in linkage disequilibrium with the func-
tional variant(s).

While early GWAS efforts were focused on populations of
European descent, initial attempts to generalise GWAS
findings to more diverse populations have had limited success
[7-9]. Importantly, these studies tended to be small and only
included the initial most significant GWAS variant (index
SNP). However, it is critical that transethnic investigation of
GWAS loci include both the index variant and all correlated
variants, given that patterns of linkage disequilibrium vary by
ancestry and the functional SNP(s) are rarely known. On
average, European populations have more highly correlated
SNPs and extended haplotypes in comparison with popula-
tions of African ancestry (AA). Hispanic/Latino (H/L) pop-
ulations, on the other hand, are more admixed with highly
variable contributions of African, European and New World
ancestry. Due in part to reduction in linkage disequilibrium
with neighbouring SNPs, transethnic studies can utilise these
differences across and within admixed populations to localise
causal variants, and discover novel population-specific asso-
ciations that were undetectable in genetically homogeneous
studies. Thus, transethnic studies may provide insight into
the underlying biology of complex traits, which may differ
among groups.

The Metabochip was developed to fine-map GWAS loci
for metabolic and cardiovascular traits, as well as replicate
promising loci with suggestive, but not genome-wide, signif-
icant p values [10]. Among the 196,725 Metabochip variants
selected for fine-mapping metabolic and cardiovascular-
related loci, approximately 40,000 were selected for type 2
diabetes and related biomarkers. Among the 39 fasting glu-
cose loci and 17 fasting insulin loci [5, 6] that were available
for replication, 15 loci included not only the index SNP but
also denser coverage of SNPs on the Metabochip that could be
utilised for fine-mapping. Importantly, despite very large
sample sizes, attempted Metabochip fine-mapping in a popu-
lation of European descent generally did not yield stronger
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associations than the original GWAS index SNP and did not
reduce the number of SNPs reaching similar levels of
significance [11]. As such, this effort was unable to narrow
in on functional candidate SNP(s).

This study examined the association of Metabochip SNPs
with fasting glucose and fasting insulin in a multiethnic study of
up to 26,760 participants: 14,953 H/L, 10,380 AA, 998 Asian
and Pacific Islander (ASN) and 429 American Indian/Alaskan
Native (AI/AN) populations from the Population Architecture
using Genetic Epidemiology (PAGE) consortium. Specifically,
we carried out the following procedures: (1) tested the associa-
tion of index SNPs previously reported for 39 fasting glucose
and 17 fasting insulin loci from studies of individuals of
European descent; (2) used transethnic meta-analysis to refine
known glycaemic trait loci in 15 loci which were densely
covered with SNPs on the Metabochip; (3) investigated
remaining metabolic and cardiovascular trait loci on the
Metabochip for association with these glycaemic traits and (4)
performed bioinformatic functional annotation of the most
significant (lead) SNPs to further prioritise likely causal
variants.

Methods

Ethics statement This study was performed in accordance
with the tenets of the Declaration of Helsinki and approved
by the Institutional Review Boards of each participating study.
All study participants provided written informed consent.

Study population and trait measurement The PAGE con-
sortium was funded by the National Human Genome
Research Institute (NHGRI) to investigate the epidemiologi-
cal architecture of well-replicated genetic variants associated
with human diseases or traits [ 12]. This analysis includes self-
reported H/L, AA, ASN and AI/AN individuals without dia-
betes, aged 18 years or over, from the Multiethnic Cohort
Study (MEC), the Women’s Health Initiative (WHI),
Atherosclerosis Risk in Communities (ARIC), Coronary
Artery Risk Development in Young Adults (CARDIA), the
Hispanic Community Health Study/Study of Latinos
(HCHS/SOL) and the Mount Sinai School of Medicine’s
(MSSM) DNA biobank (BioMe). Further details about each
cohort can be found in the electronic supplementary materials
(ESM) Methods (study population and trait measurement
section).

Fasting glucose and fasting insulin concentrations were
measured using standard assays, at laboratories specific to
each PAGE site (ESM Table 1). Individuals self-reporting that
they had ever been diagnosed with diabetes or taken diabetes
medications or who had fasting blood glucose levels
> 6.99 mmol/l (> 126 mg/dl) were excluded from analyses.
Individuals with BMI < 16.5 kg/m? or BMI > 70 kg/m* were
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also excluded on the assumption that these extremes could be
attributable to data coding errors or underlying illness or could
reflect a familial syndrome. Prior to analyses, each study re-
moved race/ethnicity outliers using ancestry informative prin-
cipal components.

After exclusions, fasting glucose analyses consisted of
14,953 H/L, 10,380 AA, 998 ASN and 429 AI/AN individuals.
Fasting insulin analyses involved fewer individuals: 12,895
H/L, 8361 AA, 998 ASN and 420 AI/AN. Fasting insulin
was not available for BioMe. Race/ethnicity was self-reported.
Descriptive characteristics of PAGE study participants by
cohort can be found in ESM Table 2. While ASN and AI/AN
were included for transethnic meta-analysis, population-
specific analyses were underpowered due to small sample sizes.
As such, ASN and AI/AN population-specific analyses were
used as a comparison for consistency in the direction of effect.

Genotyping and quality control Genotyping was performed
using the Metabochip, the design of which has been described
elsewhere [10]. In brief, the 200K Metabochip is designed to
cost effectively analyse putative association signals identified
through GWAS of many glucose- and insulin-related
metabolic and cardiovascular traits and to fine-map
established loci [10]. More than 122,000 SNPs were included
to fine-map 257 GWAS loci for 23 traits [10]. Fine-mapping
loci were defined as the GWAS index SNP and all correlated
SNPs (7% > 0.5) that were within 0.02 ¢cM of the index and
having a minor allele frequency (MAF) > 1% in at least one
HapMap Phase 1 population. SNPs were excluded if the
[llumina design score was < 0.5 or there were SNPs within
15 bp of the SNP of interest with MAF of > 2% among
Europeans (CEU [HapMap Population Code for Utah resi-
dents (CEPH) with Northern and Western European
ancestry]).

Metobochip genotyping was performed for MEC, ARIC,
CARDIA, HCHS/SOL and WHI [13] individuals. Standard
quality control filters were applied for samples and SNPs,
including missing rate and Hardy—Weinberg equilibrium
(p <1 x1077). A portion of WHI individuals of AA had both
Metabochip and the Affymetrix 6.0 genotype data available
from the SNP Health Association Resource (SHARe); this
was used to impute Metabochip SNPs in the remaining
SHARe participants with only Affymetrix 6.0 GWAS [8]
and only dosages with imputation R* > 0.3 were included in
the analyses. In BioMe, genotypes from the Illumina
HumanOmniExpress array were imputed to 1000 Genome
Phase I haplotype panels (March 2012) [14]. Metabochip
SNPs with ‘proper info’ score > 0.4 were included in the
analysis. Principal components were determined within each
study using the Eigensoft software [15]. We excluded SNPs
with a minor allele count less than 5 within each study by
racial/ethnic population. The sample success rate and concor-
dance rate for duplicate pairs across all studies was > 95% and

> 99%, respectively. Further genotyping and analytical
characteristics of the participating studies are further
summarised in ESM Methods (genotyping and quality control
section) and ESM Table 1.

Replication and fine-mapping approach The overall study
design for replication, fine-mapping and discovery of novel
loci is summarised in Fig. 1. For replication of known loci,
unconditional association analyses were performed for
previously reported index SNPs listed in ESM Table 3. A
nominal significance level (o« = 0.05) was used to define rep-
lication of a locus. Next, unconditional association analyses
were performed for all SNPs in a locus by race/ethnicity and
by transethnic meta-analysis. A locus-specific p value
threshold was defined as 0.05 divided by the number of
SNPs passing quality control in each region (ranging from
a=14x10°to x=4.1 x 1074, Table 1). Locus-specific
significance was used to conservatively adjust for multiple
testing, while also acknowledging that genetic variation is
known to influence glycaemic traits in these regions.
Linkage disequilibrium was calculated for PAGE H/L, AA
and Asian samples with 500 kb sliding windows using
PLINK [16]. Metabochip linkage disequilibrium and frequen-
cy information in Europeans was provided by the 1000
Genomes Phase 3 population. These linkage disequilibrium
patterns were used to evaluate locus refinement.
Additionally, LocusZoom plots [17] were used to graphically
display the fine-mapping results and linkage disequilibrium
for these plots used 1000 Genomes Phase I Super
Populations (European ancestry [EUR], admixed American
ancestry [AMR], African ancestry [AFR]). After identifying
the most significant lead SNP in each region, we searched for
additional independent association signals by including the
lead SNP in the conditional model and then testing each of
the remaining SNPs in a region. These conditional analyses
were repeated, adding in the lead SNP and conditional lead
SNP(s), until no SNP in the model had a conditional p value
less than the locus-specific significance. Sequential
conditional analyses were performed for each race/ethnicity
and transethnic meta-analysis. Further details on our approach
to locus refinement are provided in ESM Methods (replication
and fine-mapping of known glycaemic trait loci section).

Discovery of novel loci Metabochip-wide analyses were per-
formed to identify novel associations with fasting glucose and
fasting insulin. Statistical significance for the Metabochip-
wide analysis was set at 0.05 divided by the number of
Metabochip SNPs passing quality control (« = 2.7 x 107).
Results were examined through qq plots and Manhattan plots
for each model, highlighting known regions defined in ESM
Table 4. Further details are provided in ESM Methods
(strategy for selecting novel associations section).

@ Springer
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Fig. 1 PAGE Metabochip Study Primary aims Secondary aims Analysis approach
Design. Primary results presented ~
were from models including BMI § | Fasting glucose >
as a covariate. ESM Tables 5 and g | 46 SNPs e i
6 include results from models 5 | Fasting insulin Metabochip-wide ;r:tr;s_zahar:liis of
. X ) @ | 25 SNPs discovery of novel . Y
without BMI as a covariate Fasting x SNP associations racial/ethnic-
glucose specific analyses [ | Bioinformatic
n = 26,760 _ Redu_ce list of > functional
< ig cand!date follow-up of
Fasting © funptlonal lead SNP
insulin o || variants Sequential |y | associations
n=22674 | § conditional e
2 || Discover » | analyses:
€ || independent or 1) race/ethnic-
_“g’ ancestry- specific
L 1| specific 2) transethnic
\_ associations meta-analysis

Statistical analysis First, in each study with unrelated indi-
viduals we performed race/ethnic-specific analyses for fasting
glucose and natural log-transformed fasting insulin, excluding
ancestry outliers and first-degree relatives. In HCHS/SOL, a
weighted version of generalised estimation equations was
used to account for unequal inclusion probabilities and com-
plex family-based sampling designs [18]. Models adjusted for
age, sex (except WHI), study site (as applicable), smoking
status (current vs former/never), continuous BMI and ancestry
principal components. Like previous studies [11], primary
analyses adjusted for BMI because it is a major risk factor
for type 2 diabetes and is correlated with glycaemic traits.
For comparison, all models were also run without adjustment
for BMI. Next, fixed-effect models with inverse-variance
weighting were used to pool the study-specific SNP effect
estimates and their standard errors by race/ethnicity as

implemented in METAL [19]. Finally, summary statistics
from METAL for H/L, AA, NA/AI and ASN were combined
using inverse-variance weighted fixed effects meta-analysis in
METAL. Q statistics and /> were used to evaluate
heterogeneity across studies and race/ethnicity. Further details
are provided in ESM Methods (statistical analysis section).

Functional annotation Detailed information on the function-
al annotation methods and various datasets used is provided in
ESM Methods (functional annotation section). In brief, it is
expected that the lead SNPs are more likely to be functional or
to be in stronger linkage disequilibrium with underlying func-
tional variant(s). Therefore, lead SNPs and all correlated SNPs
(> > 0.2 in 1000 Genomes Phase 3 AFR/AMR populations)
were annotated using publicly available functional datasets.
Potential functional effects were assessed using PolyPhen2

Table 1 Characterisation of 15

fine-mapping genomic regions Chromosome Locus Base pair range No.of SNPs ~ No.of « Trait

analysed for fasting glucose and (GRCh37/hgl9) on Metabochip SNPs®

fasting insulin
1g32.3 PROX1 214,124,818-214,167,508 153 129 3.9x10* Glucose
2p23.3 GCKR 27,389,634-27,951,658 1099 966 5.2 x 10 Both
2q31.1 G6PC2 169,752,640-169,814,655 240 211 2.4 x10* Glucose
3q21.1 ADCY5 122,976,919-123,206,919 924 786 6.2 x 10° Glucose
3q26.2 SLC2A2 170,532,111-170,769,171 717 653 7.7 %107 Glucose
7p21.2 DGKB 14,185,088-15,145,520 3894 3555 1.4 x 107 Glucose
Tp13 GCK 44222,003-44,266,077 148 122 4.1x10* Glucose
9p24.2 GLIS3 4,243,162-4,310,558 419 385 1.3 x 10* Glucose
10q25.2 ADRA2A/TCF7L2 112,967,738-113,053,039 462 424 12x10* Glucose
11pl5.4 CRY2 45,706,162-46,162,829 1082 921 54 %107 Glucose
11pll.2 MADD 46,921,641-48,091,303 2392 2037 2.5x 107 Glucose
11ql2.2 FADS2 61,505,583-61,751,624 726 643 7.8 x 10 Glucose
11q14.3 MTNRIB 92,667,047-92,725321 214 180 2.8 x 10" Glucose
12q23.2 IGF1 103,851,897-104,450,976 1307 1059 4.7 x 107 Insulin
15q22.2 C2CD4A 62,099,182-62,520,109 1143 949 53 x 107 Glucose

« is the Bonferroni significance threshold (0.05/no. of SNPs passing quality control) used to define region-

specific significance

#No. of SNPs passing quality control in the transethnic meta-analysis
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[20] (http://genetics.bwh.harvard.edu/pph2/, accessed 24
August 2016) for non-synonymous variants, SPANR (http://
tools.genes.toronto.edu/) [21] for variants near splice sites,
TargetScan miRNA Regulatory Sites for 3'-UTR regions
[22], ENCODE/NIH Roadmap data [23-25] and GTEx
(https://www.gtexportal.org/home/) [26] to identify non-
coding variants positioned in predicted regulatory elements.

Results

Demographics We included a total of 26,760 participants
(14,953 H/L, 10,380 AA, 998 ASN, and 429 AI/AN) in
fasting glucose analyses. The sample sizes for fasting insulin
analyses were slightly smaller, with a total of 22,674 partici-
pants (12,895 H/L, 8361 AA, 998 ASN and 420 AI/AN). The
mean age across the five cohorts was 55 years for men and
59 years for women (range 18-93 years). Study-specific
descriptive characteristics are shown in ESM Table 2.
Particularly due to the inclusion of the WHI cohort, the pro-
portion of women in the total study population was high, with
the highest fraction observed in AA (82.6% for fasting glu-
cose and 97.1% for fasting insulin). Glycaemic trait distribu-
tions were similar across studies and ethnicities, with average
fasting glucose levels ranging from 4.7 £ 0.7 mmol/l to
5.5 £ 0.6 mmol/l and average fasting insulin levels ranging
from 43.3 £ 23.6 pmol/l to 75.9 £+ 38.8 pmol/l.

Generalisation of European glycaemic trait loci We found
that 31/39 (79.5%) fasting glucose loci and 14/17 (82.3%)
fasting insulin loci had a p value smaller than 0.05. Index
SNP associations were directionally consistent in our
transethnic PAGE meta-analysis and only four SNPs had
heterogeneity p values less than 0.05 (Table 2). The effect
estimates (3s) of index SNPs in the transethnic meta-analysis
were very similar to those published in Metabochip analysis of
individuals of European descent (Pearson’s 7= 0.86,95% CI
0.78,0.91; p <2.2 x 10"'%, ESM Fig. 1). At three loci (WARS,
GIPR and DPYSLS) we observed replication in only H/L and
not the transethnic meta-analysis. Interestingly, while the sam-
ple sizes were much smaller for Asian individuals than for H/L
and AA individuals, the transethnic meta-analysis of the
PROX] index (rs340874) was only nominally significant and
directionally consistent in the Asian samples. In the remaining
loci that did not replicate in transethnic meta-analysis or the
race/ethnic-specific analyses, the effects were generally similar
or at least in the same direction. Analyses without inclusion of
BMI as a covariate were generally similar, with slightly lower
significance at some loci. Full summary statistics for models
with and without BMI covariate are reported in ESM Table 5
and ESM Table 6, respectively.

Fine-mapping of European glycaemic trait loci Among the
15 glycaemic trait loci for which fine-mapping was attempted
on the Metabochip, ten fasting glucose loci and two fasting
insulin loci had one or more SNPs that reached locus-specific
significance (x = 0.05/nmumber of SNPs in the locus) in the
transethnic meta-analysis. The p values ranged from
1.0 x 10> at G6PC2-rs560887 to 1.5 x 10* at PROXI-
rs10494973 (Table 3). Although AI/AN ancestries were in-
cluded in the transethnic meta-analysis, the AI/AN results
are not shown because the small sample size was
underpowered for population-specific analysis. At four fasting
glucose loci, the most significant lead SNP in PAGE
transethnic meta-analysis was the same as the European index
SNP from prior Metabochip evaluation (G6PC2, ADCYS5,
MTNRIB and FADS?). For six fasting glucose loci (PROX1,
GCKR, SLC2A2, DGKB, GCK and GLIS3) and the one
fasting insulin locus (GCKR), the lead SNP in PAGE
transethnic meta-analysis was in moderate or weak linkage
disequilibrium with the index SNP in 1000 Genomes
Population EUR (+* > 0.2). At these six fasting glucose loci
and one fasting insulin locus, the PAGE lead SNP and EUR
index SNP were not independent of each other as only one of
the two SNP associations maintained nominal significance in
transethnic conditional meta-analysis where both lead and in-
dex variants were included in the model. This was further
supported by investigation of potential fine-mapping through
locus zoom plots.

For each of the 11 glycaemic trait loci with potential
transethnic fine-mapping (fasting glucose loci-PROX],
G6PC2, ADCY5, MTNRIB, FADS2, GCKR, SLC2A2,
DGKB, GCK and GLIS3; fasting insulin locus—GCKR), we
found that the number of SNPs in linkage disequilibrium with
the most significant marker in the transethnic results (> > 0.2 in
the 1KG super populations AFR and AMR) were less than the
number of SNPs tagged by the EUR marker (+* > 0.2 in EUR).
Visual inspection of locus zoom plots indicated that transethnic
meta-analysis refined each of these loci by reducing the number
of highly correlated SNPs reaching the same level of signifi-
cance and/or narrowing the genomic region containing putative
causal SNPs (ESM Fig. 2). On average, the number of variants
in high linkage disequilibrium was reduced by 72.5% with the
number of linkage disequilibrium SNPs ranging from one at
MTNRIB to 162 at SLC2A2 in the PAGE transethnic meta-
analysis results. Refinement was most evident at the SLC2A2
locus (Fig. 2). Bioinformatic functional follow-up was per-
formed for each of the eleven glycaemic trait loci with one or
more variants passing the region-specific significance threshold
in our transethnic meta-analysis. We observed an overlap of
promoter and enhancer sequences at each locus and identified
potential target genes. These data not only provided further
support for the fine-mapping results but also revealed
additional insights into the aetiology of glycaemic traits.
UCSC Genome Browser images of each locus are provided
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Fig. 2 SLC2A2 regional plot. Regional plots of SNP associations
(—logio(p value)) with fasting glucose are shown for the MAGIC
European (a) and the PAGE transethnic (b) meta-analyses. Not all
SNPs used in the transethnic meta-analysis were present in the available
MAGIC data (www.magicinvestigators.org/downloads/, accessed 26
June 2017) because of mapping issues [11]. SNPs not passing quality
control or outside the fine-mapping region were removed from the
transethnic plots. The colour scale indicates linkage disequilibrium (%)
between each fine-mapping SNP and the GWAS index SNP (rs1280,
purple diamond), which was calculated using 1000 Genomes
Populations (CEU for MAGIC and AMR for PAGE). The population
chosen for linkage disequilibrium colouring in the transethnic meta-
analysis was based on population-specific analysis results (choosing the
one with strongest underlying SNP associations). The most significant
SNPs in MAGIC fine-mapping (rs11709140) and PAGE (rs1604038) are
labelled

in ESM Fig. 3. The results of our in silico functional annota-
tions are summarised in ESM Table 7.

Secondary associations at known glycaemic trait loci To
identify additional independent association signals at sig-
nificant loci, conditional analyses were performed. Results
of these analyses and population-specific associations are
shown in Table 4. For transethnic conditional meta-analy-
ses, ten fasting glucose loci and two fasting insulin loci
were analysed. Independent secondary associations were
identified at two fasting glucose loci (G6PC2-rs477224
and GCK-rs2908286). The second round of conditional
analyses did not identify significant tertiary signals.
Bioinformatic follow-up of rs477224 suggested that the
variant is positioned within a pancreatic islet enhancer.
The 152908290 variant was in weak linkage disequilibrium
(AMR #? = 0.26, AFR /* = 0.23) with a variant, rs2971677,
predicted to alter splicing efficiency of GCK.

@ Springer

To identify population-specific loci, we conducted separate
conditional analyses for significant loci in the primary H/L
(GCKR-131260326, G6PC2-rs560887, SLC2A2-rs1280,
DGKB-151005256, GCK-rs1799884, FADS3-rs12577276,
MTNRI1B-1s10830963, C2CD4A-rs7167881), AA (G6PC2-
1577719485, GCK-rs2908286, CRY2-rs117493014, MADD-
rs77082299, ADCYS5-rs11708067, MTNR1B-rs10830963)
and Asian populations (GLIS3-rs4395942). A population-
specific variant was detected in the AA analysis of the
G6PC2 locus. The lead fasting glucose SNP, rs77719485, is
less frequent in AA population (MAF 2.4%) and rare or
monomorphic in the other populations (MAF 0.4% in H/L).
Like the transethnic lead SNP, rs560887, bioinformatic
follow-up suggested that rs77719485 may affect splicing
efficiency for exon 4 for G6PC2.

Association testing outside of glycaemic trait fine-mapping
regions to identify potential novel variants In secondary
analyses, we conducted a Metabochip-wide scan to identify
potential novel or pleiotropic variants, given that the chip in-
cluded variants with suggestive signals in established loci for
many known metabolic traits. Models were run with and with-
out BMI as a covariate (ESM Table 8, ESM Figs 4,5). Using the
Bonferroni significance threshold (0.05/182,055 = 2.7 x 1077),
we identified one novel association for fasting insulin
(rs75862513, p = 4.3 x 1078, Fig. 3) at the SLC17A2 locus
previously associated with height and blood pressure [27, 28].
After BMI adjustment (ESM Fig. 5), the association was
attenuated suggesting that the effects may be mediated by BML

Discussion

In this large multiethnic study population of close to 30,000
participants, we used transethnic fine-mapping to narrow the
list of putative causal variants for eleven glycaemic trait loci.
On average, we observed a 72% reduction in the number of
candidate SNPs, before bioinformatic follow-up. We further
demonstrated that many of the genetic variants associated with
glycaemic traits likely exert their effects through regulatory
mechanisms (splicing or enhancer activity), and provide
detailed annotations for subsequent laboratory follow-up.
These regulatory annotations provide putative targets for
laboratory follow-up (e.g. genome editing) and important
insights into strong targets for future therapeutic interventions.
For example, this study found that most of the implicated
enhancer elements were binding sites for the transcription
factor FOXA?2 in pancreatic islets, and previous studies have
suggested that differential expression of FOXA2 is a genetic
determinant of fasting glucose levels, as well as type 2
diabetes risk [29, 30]. Like the previous European
Metabochip analysis, we found that rs6113722, which is
positioned within a IncRNA adjacent to FOXA2, was
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Fig. 3 Fasting insulin association p values for each Metabochip variant
from the transethnic meta-analysis in model without BMI. The —log; of
p values for each SNP on the Metabochip is plotted against chromosomal
positions. Grey and black circles, SNPs alternating by chromosome; red
squares, SNPs in previously reported glycaemic trait loci (within 1 Mb of
index SNP n = 28,580); blue diamonds, novel SNP associations reaching
Metabochip-wide significance (all are in the SLC17A2 locus); solid line,
threshold for Metabochip-wide significance (0.05/174,898 = 2.9 x 1077);
dashed line, threshold for genome-wide significance « = 5.0 x 1078

associated (p = 3.2 x 10°%) with fasting glucose. As such,
expression levels of FOXA2 could be a particularly important
regulator of glucose homeostasis and a putative target for
genome editing. Although the clinical application of genome
editing is in its infancy, in vivo studies have already
demonstrated the utility of the CRISPR/Cas9 technique. For
example, to mimic observations of the naturally occurring
loss-of-function mutation in the gene encoding LDL receptor
antagonist PCSK9, a previous study in mice used CRISPR/
Cas9 vectors to decrease PCSK9 protein levels, which
resulted in increased hepatic LDL receptor levels, and a
subsequent decrease in blood cholesterol levels [31].
Identification of key targets, such as FOXA2, and potential
regulatory elements of these targets for laboratory follow-up
is a critical first step in the translation of GWAS findings.
Analysis of known glycaemic trait loci in this diverse
population study suggests the genetic determinants of
glycaemic trait levels are likely to be similar across populations.
In comparison with previous glycaemic trait studies conducted
in diverse populations [7, 32], the replication of effects across
populations is more extensive, likely due to the size of this
study population. Although most of the loci in the European
study were generalisable across populations, this study exem-
plifies the notion that analysis in diverse populations can refine
known loci as well as help in the discovery of novel, sometimes
population-specific, associations. For instance, in addition to
the well-established splice variant rs560887 that has been ro-
bustly associated with fasting glucose, transethnic meta-
analysis of the G6PC?2 locus identified an additional signal that
may implicate regulatory functionality in glycaemia-related tis-
sues. At this same locus, an AA-specific variant, rs77719485,
was found to be strongly associated with fasting glucose and,

@ Springer

like rs560887 [33], is predicted to affect splicing efficiency. By
expanding our analysis to the entire Metabochip, we
discovered strong associations with SLC/7A2, that were not
previously reported by the Metabochip analysis carried out by
Scott et al [11] in Europeans. 1575862513 is a relatively rare
variant that appears to be monomorphic in Europeans and was
most frequent in the Asian (MAF = 0.04-A) and H/L
(MAF = 0.001-A) populations in this study. If replicated in an
independent dataset, this finding may represent a new locus not
previously detected in European- or AA-specific analyses.
These examples illustrate the power of transethnic analysis
for locus refinement and novel discovery.

Strengths of this study include the large study size, high-
density genotyping and representation of multiple diverse
populations. In light of the heavy burden of hyperglycaemia
in H/L and AA populations, this study begins to address the
major gap in knowledge related to the genetic architecture of
glycaemic traits in understudied American minority popula-
tions. The large study population, combined with new anno-
tation resources, allowed transethnic fine-mapping and predic-
tion of regulatory elements. However, there were several lim-
itations that should be noted. Although this study included
populations from four major racial/ethnic groups, the greatest
proportions of participants were H/L and AA. As such, this
study was limited in its ability to detect associations with more
prominent effects in Asian populations [34, 35]. We also ac-
knowledge that fine-mapping approaches only serve as an
initial step in determining the underlying causal variant(s)
driving association signals by prioritising likely causal candi-
dates for more onerous laboratory follow-up. To further meet
this objective, functional elements and variants were identified
using bioinformatics databases. However, given that the func-
tional evidence detected by these datasets is incomplete, future
functional studies are critical in determining the underlying
causal variants. That being said, the combination of fine-
mapping with bioinformatics data is particularly useful for
reducing both the physical genomic regions of interest and
prioritising candidates for molecular characterisation.
Furthermore, the in silico approaches help to provide richer
inferences regarding the biological mechanisms modulating
fasting glucose and insulin levels. As such, fine-mapping is
an essential step in functional interpretation of GWAS signals
because laboratory follow-up of all possible variants in
GWAS loci is prohibitively expensive and time-intensive.

This transethnic study comprehensively fine-mapped
known common variants associated with concentrations of
fasting glucose and insulin. Genomic regions harbouring
known risk variants were refined, novel functional candidates
were proposed, new independent signals in previously fasting
glucose-implicated genes were identified and one novel locus
was discovered. Thus, these results suggest that transethnic
meta-analysis can help in transforming GWAS results into
new biological insight.
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