
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2023 Faculty Research 

4-12-2023 

Genetic dissection of the pluripotent proteome through multi-Genetic dissection of the pluripotent proteome through multi-

omics data integration. omics data integration. 

Selcan Aydin 

Duy T Pham 

Tian Zhang 

Gregory R Keele 

Daniel A Skelly 

See next page for additional authors 

Follow this and additional works at: https://mouseion.jax.org/stfb2023 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2023
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2023?utm_source=mouseion.jax.org%2Fstfb2023%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Selcan Aydin, Duy T Pham, Tian Zhang, Gregory R Keele, Daniel A Skelly, Joao A Paulo, Matthew Pankratz, 
Ted Choi, Steven P Gygi, Laura G Reinholdt, Christopher L. Baker, Gary Churchill, and Steven C. Munger 



Article

Genetic dissection of the pluripotent proteome
through multi-omics data integration

Graphical abstract

Highlights

d Proteomic profiling of 190 embryonic stem cells from

genetically diverse mice

d Comparison with RNA-seq and open chromatin revealed

variation unique to protein abundance

d Multi-omics data integration inferred regulatory signatures

that co-vary among mESCs

d Genetic mapping identified genomic ‘‘hotspots’’ that drive

multi-omic signatures

Authors

Selcan Aydin, Duy T. Pham,

Tian Zhang, ..., Christopher L. Baker,

Gary A. Churchill, Steven C. Munger

Correspondence
laura.reinholdt@jax.org (L.G.R.),
christopher.baker@jax.org (C.L.B.),
gary.churchill@jax.org (G.A.C.),
steven.munger@jax.org (S.C.M.)

In brief

Genetic background drives phenotypic

variability in pluripotent stem cells. Using

a diverse panel of mouse ESCs, Aydin

et al. performed quantitative proteomics

and genetic mapping to identify QTL

hotspots that drive variation in multi-omic

regulatory signatures and numerous loci

that influence the pluripotent proteome

independent of the transcriptome.

Aydin et al., 2023, Cell Genomics 3, 100283
April 12, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.xgen.2023.100283 ll

mailto:laura.reinholdt@jax.org
mailto:christopher.baker@jax.org
mailto:gary.churchill@jax.org
mailto:steven.munger@jax.org
https://doi.org/10.1016/j.xgen.2023.100283
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100283&domain=pdf


Article

Genetic dissection of the pluripotent
proteome through multi-omics data integration
Selcan Aydin,1 Duy T. Pham,1 Tian Zhang,2 Gregory R. Keele,1 Daniel A. Skelly,1 Joao A. Paulo,2 Matthew Pankratz,3

Ted Choi,3 Steven P. Gygi,2 Laura G. Reinholdt,1,4,* Christopher L. Baker,1,4,* Gary A. Churchill,1,4,*
and Steven C. Munger1,4,5,*
1The Jackson Laboratory, Bar Harbor, ME 04609, USA
2Harvard Medical School, Boston, MA 02115, USA
3Predictive Biology, Inc., Carlsbad, CA 92010, USA
4Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
5Lead contact

*Correspondence: laura.reinholdt@jax.org (L.G.R.), christopher.baker@jax.org (C.L.B.), gary.churchill@jax.org (G.A.C.), steven.munger@jax.
org (S.C.M.)

https://doi.org/10.1016/j.xgen.2023.100283

SUMMARY

Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have
used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a compre-
hensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The
quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways
that were differentially activated in the proteomics data that were not evident in transcriptome data from
the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed
broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in
pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these
multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic
interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map
for mESCs that can provide a basis for future mechanistic studies.

INTRODUCTION

Pluripotent stem cells (PSCs) hold great potential for regenera-

tive medicine and modeling human disease,2 but variation in

the derivation, stability, and differentiation of individual cell lines

impedes progress toward these goals.3,4 Genetic background

contributes significantly to phenotypic variation in human and

mouse PSCs.3,5 Systems genetics experiments can identify the

loci that harbor genetic variants and can associate phenotypic

variability with regulatory networks that are affected by these

variants.1,6–10

Most PSC studies addressing phenotypic variability have

focused on transcriptional regulation using measures of chro-

matin state and transcript abundance, due in part to the relatively

low cost of RNA and DNA sequencing. However, cellular pheno-

types are largely determined by proteins, and the effects from

genetic variation on chromatin states and transcripts may be

buffered, amplified, or even reversed by post-transcriptional

processes acting on protein abundance.9,11 Previous studies in

cell and animal models have found a surprising level of disagree-

ment between protein and transcript abundance12–15; this high

discordance was also observed in differentiating mouse embry-

onic stem cells (mESCs16). Genetic analyses suggest that stoi-

chiometric buffering of protein complex members may attenuate

their individual transcriptional variation in adult mouse tis-

sues,11,17 and translational output was recently shown to relay

back to chromatin state and transcription to drive mESC self-

renewal.18 These findings suggest that post-transcriptional

regulation of protein abundancemay play a significant role in plu-

ripotency maintenance and differentiation in PSCs.

We previously derived a large panel of mESCs from Diversity

Outbred (DO) mice. The outbred DO mice are derived from 8

inbred strains with high genetic diversity and a population struc-

ture optimal for genetic mapping.1,19 We maintained mESCs in

sensitized culture conditions to amplify genetic differences in

the pluripotent ground state, and analyzed transcriptome and

chromatin state data to map genetic loci underlying this vari-

ability.1 We mapped thousands of quantitative trait loci (QTLs)

that affected chromatin accessibility (caQTLs) and transcript

abundance (eQTLs), and, of particular importance, we identified

1 locus on chromosome (Chr) 15 that was linked to the variable

expression of 254 genes, many of which have known roles in plu-

ripotency. Mediation analysis identified LIF receptor (Lifr) as the

most likely candidate gene underlying this eQTL ‘‘hotspot,’’ and

further implicated a single causal SNP in an mESC-specific

region of open chromatin �10 kb upstream of Lifr. Luciferase

assays and CRISPR-mediated allele swaps validated the impor-

tance of genotype at this enhancer SNP (hereafter referred to as
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‘‘Lifr genotype’’) on the expression of Lifr, downstream target

genes, protein markers of pluripotency (NANOG), and capacity

for self-renewal.1 Finally, in a companion article, we showed

that genetic background can bias differentiation propensity of

mESCs through its effects on Wnt signaling activity.20 Together,

these studies demonstrated the power of this resource for dis-

covery of genetic drivers and molecular mechanisms that under-

lie variation in the maintenance of the pluripotent ground state

and differentiation propensity of mESCs.

In this study we expand to investigate how genetic effects

on pluripotency are mediated by the proteome. We quantified

proteins by multiplexed mass spectrometry across the same

DO mESC lines. As with chromatin accessibility and transcript

abundance, we find the quantitative proteome to be highly

variable across lines. Genetic mapping identified protein

QTLs (pQTLs) for 20% of all measured proteins, and one-third

affect protein abundance independently from transcript

levels, presumably through post-transcriptional mechanisms.

These signatures of genetic effects on proteins were not de-

tected in our earlier analysis of transcript abundance. The re-

maining pQTLs colocalize with previously identified eQTLs

and/or caQTLs, consistent with transcriptional regulation.

We applied multi-omics factor analysis (MOFA) to identify

latent factors that account for the variability in gene regulato-

ry signatures across these 3 layers of molecular data.21,22 Ge-

netic mapping of the latent factors identified the Lifr hotspot

as well as novel loci. We show that multi-omics integration

and dimensionality reduction with MOFA increases power to

detect genetic drivers of broad regulatory signatures

compared with QTL mapping of individual molecular traits.

We further show how genetic variation affects transcriptional

and post-transcriptional gene regulation to drive variation in

ground-state pluripotency. The resulting regulatory map for

mESCs can provide a rational basis for future mechanistic

studies.

RESULTS

The pluripotent proteome of genetically diverse mESCs
We quantified relative protein abundance by mass spectrometry

in 190 unique DO mESC lines (Figure 1A; Table S1). In total, we

detected 7,432 proteins in at least half and 4,794 proteins in all

the cell lines. Proteins detected in all mESCs are overrepre-

sented for those involved in cellular metabolism, post-trans-

criptional processes, and protein complexes. By contrast,

transmembrane proteins and transcription factors are overrepre-

sented among the genes showing expression in the RNA

sequencing (RNA-seq) data but not detected in the proteomics

data (n = 5,492 out of 12,732 protein-coding genes) (Table S2).

Transmembrane proteins contain both hydrophilic and hydro-

phobic subunits, making them less soluble23 and therefore

more difficult to isolate in untargeted proteomics analysis. The

probability of detecting a given protein is linked to its transcript

abundance (Figure S1A); expressed genes at the lower threshold

for transcript abundance (average count = 1) have a protein

detection rate of <60% (Figure 1B). This includes transcription

factors, which, as a group, exhibit lower mean transcript abun-

dance, presumably resulting in lower levels of detectable protein

(Figures S1B and S1C). Proteins encoded by genes with high

transcript expression—a group that includes many ribosomal

and mitochondrial proteins—are detected at a much higher

rate (>90%) (Figure 1B).

The mESC proteome is highly variable across cell lines

(Figures S1D and S1E), and principal component analysis

(PCA)23 points to chromosomal sex as the largest driver of vari-

ance across samples (12.2%; Figure 1C). Most of this variation

(principal component [PC] 1) stems from sexually dimorphic

expression of X-linked proteins, likely due to 2 active X chromo-

somes in XXmESCs.24,25 Over half of all proteins exhibit variable

expression linked to sex (n = 4,106 out of 7,432, p < 0.05),

including pluripotency factors SOX2, ESRRB, KLF2, KLF4,

SALL4, UTF1, NR5A2, and LIN28A.26 Next, we performed gene

set variation analysis (GSVA,27 see STAR Methods) to identify

pathways that vary in their activity (expression) across lines. XX

and XY mESCs vary in many cellular processes and protein

complexes (Table S3); XY lines show higher activity of DNA

methylation, histone modification, and chromatin remodeling

pathways, consistent with previous studies28,29 (Figure 1D).

Ribosome biogenesis genes are overrepresented in weightings

of PC1, with similarly higher expression in XY lines (p < 5 3

10�5) (Figure 1D). In addition, we find that Lifr genotype is asso-

ciated with proteome activity for several biological processes

(Table S3). For example, cell lines with at least 1 copy of the refer-

ence Lifr allele showed higher abundance of proteins with

regulatory roles in ADP-ribosylation, the transfer of ADP-ribose

moieties (derived from NAD) to protein amino acids (Figure 1D).

This histone modification is catalyzed by poly-ADP-ribose poly-

merases, 2 of which (PARP1/ARTD1, PARP7/TIPARP) were

shown in mESCs to occupy and maintain an active epigenetic

state at key naive pluripotency genes including Nanog, Oct4/

Pou5f1, Sox2, and Rex1/Zfp42.30 Of note, GSVA enrichment of

ADP-ribosylation proteins and several other pluripotency and

differentiation pathways are observed only in the proteomics

data and not evident in the transcriptome GSVA results (path-

ways highlighted in Table S3).

Extracellular proteins are overrepresented among the most

variable proteins, while proteins that bind in complexes are

among the least variable (false discovery rate [FDR] < 0.05;

see STAR Methods); these differences in variance cannot be

explained by differences in protein abundance levels (Fig-

ure S1F). Interestingly, targets of the transcription factor

REX1, a marker of naive pluripotency,26 are also overrepre-

sented among the least variable proteins, despite REX1 protein

itself being highly variable across mESCs (Figure S1G). REX1 is

known to act as a repressor,31 and the lowest REX1-expressing

mESC lines may still exceed a threshold required to efficiently

repress its target genes. Alternatively, the effects of variable

REX1 protein abundance on downstream targets may be buff-

ered. Indeed, REX1 may be dispensable for pluripotency main-

tenance,32 supporting the existence of such downstream

compensatory mechanisms.

Members of complexes vary less in their protein abundance

overall than non-complex forming proteins (Figure S2A), and sub-

units of individual complexes co-vary in their abundance more

than proteins not known to physically interact (Figure S2B; see

STAR Methods), in line with previous studies33 suggesting
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that physical interactions among proteinsmay act to dampen their

individual variation in abundance. We quantified co-variation be-

tween complex members and ranked complexes by their co-

regulation, or ‘‘cohesiveness,’’ of subunits. The most cohesive

10% of complexes were associated with the cell cycle, protein

modification, and translation machinery, consistent with our anal-

ysis of individual proteins and published proteome studies of

human and mouse cell lines and tissues33–35 (Figure 2). Several

complexes involved in protein trafficking and transcriptional regu-

lation are similarly highly cohesive. By comparison, the least cohe-

sive 10% of complexes are enriched for those associated with

chromatin remodeling. Sex differences in complex cohesiveness

are also observed; for example, protein constituents of the cyto-

plasmic small and large ribosomal subunits and mitochondrial

small ribosomal subunit are more cohesive in XY than XX, while

HOPS complex members are significantly more cohesive in XX

than XY mESCs (p < 5 3 10�4) (Figure S2C). While the molecular

basis of these sex differences in protein complex cohesiveness

remains to be established, they are also observed in adult mouse

liver17 and heart proteomes36 and are therefore unlikely to play a

unique regulatory role in pluripotency.

Figure 1. Overview of the quantitative prote-

ome in Diversity Outbred mESC lines

(A) The proteomes of 190 mESCs were quantified

and compared with published ATAC-seq and RNA-

seq data.1

(B) The probability of detecting a protein by MS

(plotted on y axis) is linked to the protein-encoding

gene’s average transcript abundance (x axis).

(C) Principal component analysis points to sex as the

major source of proteome variation among mESCs.

PC1 and PC2 are plotted and colored by sex.

(D) GO:BP categories including DNA methylation,

chromatin remodeling, and ribosome biogenesis

show significantly higher activity by GSVA in XY

compared with XX lines. Protein ADP-ribosylation

shows higher activity in mESCs having at least one

copy of the reference Lifr allele (two-way ANOVA

followedbyTukey’sHSD, *p < 0.05, ****p < 53 10�5).

See also Figure S1 and Tables S1, S2, and S3.

Protein abundance co-varies with
chromatin accessibility and
transcript abundance
The pluripotent state is established and

maintained by a gene regulatory cascade

that orchestrates changes across multiple

molecular layers from chromatin accessi-

bility to transcript and protein abun-

dance.37 To better understand these

multi-layered regulatory interactions and

to identify proteins with potentially impor-

tant roles, we looked at the co-variation

of proteins with measures of chromatin

accessibility (assay for transposase-

accessible chromatin with sequencing

[ATAC-seq]) and transcript abundance

(RNA-seq) across the DO mESCs.

We first compared protein abundance (n = 7,148) with chro-

matin accessibility (n = 99,159 peaks) and found that many pro-

teins were most highly correlated with chromatin in the region

proximal to their protein-encoding gene (Figure S3A), consistent

with our earlier observation of high concordance between tran-

script abundance and local open chromatin.1 We identified

37 proteins whose abundance co-varied with chromatin

accessibility at 100 or more ATAC-seq peaks genome-wide

(abs(r) > 0.5; evident as horizontal bands in Figure S3A). The

list includes well-characterized pluripotency regulators as well

as proteins with no previously reported role in pluripotencymain-

tenance (Table S4). For example, the abundance of ID1, a tran-

scription factor critical in the maintenance of embryonic stem

cell (ESC) self-renewal and regulation of lineage commitment,38

co-varies significantly (both positively and negatively) with chro-

matin accessibility at 112 ATAC-seq peaks (Figure 3A). Other

proteins with potential roles in pluripotency maintenance include

AHDC1, a putative DNA-binding protein previously shown

to physically interact with the transcription factor TCF7L1

(TCF3) involved in pluripotency regulation39,40; and UHRF2, a

ubiquitin ligase identified as a target of epigenetic control during
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self-renewal.41 For almost half of these proteins, we find that

their covarying ATAC-seq peaks are overrepresented in binding

sites active in ESCs for TRP53 (n = 28) and naive pluripotency

factors NANOG, ESRRB, and PRDM14 (n = 19, 18, 16, respec-

tively at FDR < 0.05).26 Many of these covarying chromatin peaks

are proximal to genes involved in cellular response to leukemia

inhibitory factor (LIF), providing further evidence for their

importance in establishing and/or maintaining pluripotency

(FDR < 0.05). Notably, only 6 of the 37 proteins also co-vary

with chromatin accessibility at the level of their transcript abun-

dance; for the other 29, correlations to chromatin are observed

only at the level of protein abundance, consistent with post-tran-

scriptional regulation of these chromatin modifying proteins

(Table S4). These data suggest 2 possibilities: these proteins

may play active roles in chromatin remodeling and directly influ-

ence ground-state pluripotency, or, alternatively, they may serve

as downstream quantitative protein biomarkers of upstream ac-

tivities of known pluripotency regulators. The presence of known

pluripotency regulators among this list supports the former sce-

nario, while the relative lack of annotated TFs/chromatin remod-

elers suggests the latter. Future experiments will be required to

validate direct or causal roles for these novel proteins.

We next examined the concordance between protein and

transcript abundance in DO mESCs. For genes where we detect

both (n = 7,241), protein and transcript abundance are broadly

positively correlated in their magnitude and variance (r = 0.5,

p < 2.2 3 10�16, see STAR Methods; Figures S3B and S3C).

Similar studies in human iPSCs found that many proteins that

varied in abundance did not show variation in their cognate

RNAs.9 We see a similar trend for a small number of proteins

(n = 180) where protein abundance is highly variable across

cell lines without similar variation at the transcript level.

Conversely, genes exhibiting high variation in transcript abun-

dance but lacking variation at the protein level (n = 111) are over-

represented for ribosomal proteins. Surprisingly, the overall

agreement between protein and transcript levels within a cell

line appears to vary considerably across the mESCs (r range

0.1–0.6) (Figure 3B). We ruled out sample mix-ups as a potential

reason for the low concordance in some cell lines (Figure 3B),

and even the lowest observed sample correlation is still well

above the null distribution of correlation values from permuted

sample assignments (Figure S3D). Looking at individual genes,

we see a wide range of variation in the correlation between pro-

tein and transcript levels across mESC lines, where many are

highly positively correlated while others are negatively correlated

(Figure 3C). The larger group of genes showing positive tran-

script-protein correlation (n = 5,530, r > 0.16, p < 0.05) is en-

riched for proteins involved in X-linked inheritance, lipid meta-

bolism, and membrane proteins (Figure 3C). The smaller group

of genes with significantly negatively correlated transcript and

protein levels (n = 82, r < �0.16, p < 0.05) are enriched for those

with roles in cellular respiration and mitochondrial translation.

Genes involved in mRNA splicing and cytoplasmic translation

are enriched among those exhibiting low correlation in their tran-

script and protein levels (abs(r) < 0.05, n = 498). Genes that are

not known to form protein complexes show stronger positive

correlation in transcript and protein abundance (Figure S3E),

further supporting the idea that complexes place physical con-

straints on protein abundance that can serve to buffer against

transcriptional variation.11,17

Genetic characterization of the pluripotent proteome
Variation in protein abundance across DO mESC lines appears

to be driven by genetic background, with more than 90% of

measured proteins estimated to have non-zero heritability (me-

dian h2 = 0.25). To identify genomic loci underlying this quantita-

tive variation, we performed protein quantitative trait locus

(pQTL) mapping (see STAR Methods; refer to Table S5 for a list

of all significant pQTLs). We detected pQTLs for over 20% of ex-

pressed proteins (n = 1,555 out of 7,432), with a total of 1,677

pQTLs (LOD > 7.5, permutation p < 0.05, FDR = 0.058) (Fig-

ure 4A). Of these, nearly two-thirds (n = 1,056) are local pQTLs

and map to within ±10 Mb of the midpoint of the corresponding

gene. We found many fewer distant pQTLs (n = 621) that map

Figure 2. Subunit cohesiveness varies considerably among 164 protein complexes

For each complex, pairwise correlations between all subunits were calculated and summarized as a boxplot. Boxplots are ordered and colored based on their

median pairwise correlation, with more cohesive complexes on the left. Specific examples are highlighted. See also Figure S2.

4 Cell Genomics 3, 100283, April 12, 2023

Article
ll

OPEN ACCESS



outside of the local genomic window. As with previous pQTL

studies of similar size in DO mice,11,36 local pQTLs tend to be

more significant andmore reproducible than distant pQTLs (local

median LOD = 10.8; distant median LOD = 7.9), and, for over

80% of genes that have a local pQTL, we also detected an

eQTL for the cognate transcript. For most of these local eQTL-

pQTL pairs, the founder strain allele effects at the peak SNP

are highly correlated (75% of local pairs are significant at

FDR < 0.05; median r = 0.9), consistent with a single causal

variant affecting both transcript and protein abundance (Fig-

ure 4B). Correlation between chromatin accessibility (caQTLs)

and co-mapping local pQTLs is more variable, with some prox-

imal caQTLs showing strong correlation of allele effects and

others showing little or even negative correlation to local pQTLs.

For example, a chromatin region within the promoter of Bspry, a

gene linked to pluripotency in mESCs and early embryonic

development,42 has a local caQTL with highly concordant

founder allele effects on Bspry transcript and protein abundance

(Figure 4C, top). Anti-correlated local caQTLs include a variable

region in the promoter of the gene Tfcp2l1, which encodes a

transcription factor that has critical roles in maintenance of naive

pluripotency.43,44 The founder allele effects at this caQTL are

Figure 3. The quantitative proteome co-

varies with chromatin accessibility and the

transcriptome

(A) ID1 protein abundance is highly correlated with

many regions of open chromatin genome wide.

Circos plot showing ATAC-seq peaks where chro-

matin accessibility is positively (red) and negatively

(blue) correlated with ID1 abundance; n = 112,

abs(correlation) > 0.5.

(B) Overall agreement between the transcriptome

and proteome within an mESC line is widely variable

across lines, as shown by a histogram of sample-

level Pearson correlations (n = 174).

(C) Agreement in transcript and protein abundance

for a given gene also varies widely across lines.

Histogram depicting the distribution of pairwise

correlation coefficients between transcript and

protein abundance of genes, with overrepresented

GO terms annotated below in matching colors

(green, positively correlated; orange, negatively

correlated; purple, geneswith little or no correlation).

See also Figure S3 and Table S4.

nearly opposite to those for the Tfcp2l1

local eQTL and pQTL (r = �0.8 for both

caQTL-eQTL and caQTL-pQTL pairs) (Fig-

ure 4C, bottom). Both strongly positively

and negatively correlated local effects

may implicate a single causal variant but

with different molecular mechanisms—

e.g., a promoter variant bound by a

repressor could explain the anti-correlated

caQTLs and pQTLs for Tfcp2l1—whereas

uncorrelated founder effects suggest mul-

tiple causal variants with independent ef-

fects on chromatin and transcript/protein

abundance.

Local pQTLs likely stem from cis-regulatory or nonsynony-

mous coding variants, whereas distant pQTLs reflect trans ef-

fects that are likely mediated through another protein. Distant

pQTLs are not uniformly distributed across the genome and co-

localize to hotspots, as we previously observed for caQTLs and

eQTLs in DO mESCs.1 We identified 3 pQTL hotspots on chro-

mosomes (Chrs) 4, 9, and 15 (Figure 4D). Two of these were pre-

viously mapped as caQTLs and/or eQTLs (Chrs 4, 15),1 while the

Chr 9 hotspot uniquely affects protein levels (Table S6). The iden-

tity of the causal gene underlying the Chr 9 pQTL remains to be

established, but targets of this pQTL-specific hotspot are en-

riched for proteins involved in translation initiation. This hotspot

has not been detected in pQTL analyses of adult DO tissues

and may point to a post-transcriptional regulatory mechanism

that is unique to pluripotent mESCs. By contrast, we previously

discovered a caQTL-eQTL hotspot on Chr 15 with shared tran-

scriptional effects on hundreds of transcripts and chromatin

peaks; the Chr 15 pQTL hotspot maps to the same region and

exhibits similar properties. Indeed, we observe the same founder

allele effects andwe identified Lifr transcript as the top candidate

mediator for most pQTLs that map to this locus (see STAR

Methods; Figures S4A and S4B), consistent with previous
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findings for caQTLs and eQTLs.1 We were unable to detect LIFR

protein in our mass spectrometry data, likely because it is a

transmembrane protein with low solubility.45 Among the 32 sig-

nificant pQTLs at this hotspot, 14 are found only for proteins,

including TCF7L1, a regulator of exit from pluripotency.46 These

unique pQTLs could reflect post-transcriptional effects from

LIFR; however, we find it more likely that transcript abundance

for these genes is similarly affected by variation in Lifr expression

but the eQTL failed to reach statistical significance. Likewise, of

the 107 protein-coding genes with significant Chr 15 eQTLs we

identified previously, only 9 are detected here as significant

pQTLs. Again, many of these are likely false negatives due to

the stringent genome-wide detection threshold. Finally, we

treated our protein GSVA sample enrichment scores as quantita-

tive traits for mapping and find that the protein ADP-ribosylation

pathway maps with a near-significant QTL on proximal Chr 15

(LOD = 7.4, FDR = 0.06) that is best mediated by Lifr transcript

abundance (Figure S4C), explaining its correlation to Lifr geno-

type in Figure 1D.

A growing body of evidence supports the idea that physical in-

teractions among proteins can propagate or buffer the effects of

transcriptional variation on protein abundance.9,11,17 This ‘‘stoi-

chiometric buffering’’ significantly affects proteins that bind in

stable complexes and likely accounts for their increased co-vari-

ation and lower heritability in DO mESCs. Indeed, we map fewer

pQTLs overall for protein complexmembers, consistent with pre-

vious reports.17 We find abundant evidence for stoichiometric

buffering of protein complexes, for example in ribosomal and

chromatin remodeling complexes where subunits vary little in

their protein abundance—and consequently do not map with

any pQTLs—despite varying considerably in their transcript

abundance and mapping with many significant eQTLs. In addi-

tion, we observe complexes that vary extensively across DO

mESCs and whose subunits share a significant pQTL. In these

cases, local genetic variation affecting a single subunit appears

to propagate to other members of the complex. The replication

complex provides such an example, where the subunits RPA1,

RPA2, and RPA3 all map with a pQTL on Chr 6 and have concor-

dant founder allele effects (Figure 4E). The Rpa3 gene is located

nearby, and Rpa3 transcript levels are affected by a local eQTL

that exhibits the same founder allele effects, suggesting that

the causal variant acts in cis and influences transcript abundance

Figure 4. Genetic characterization of the pluripotent proteome
(A) Genetic mapping identifies 1,677 significant pQTLs including 1,056 local (diagonal line) and 621 distant loci. The location of the pQTL is plotted on the x axis

against the midpoint of the protein-coding gene on the y axis.

(B) Most co-mapping eQTLs and pQTLs show high agreement in their haplotype effects. Histogram of pairwise correlation coefficients between inferred allele

effects from eQTL and pQTL scans for all genes with co-mapping QTLs. Bars are colored by significance of the correlation.

(C) Examples of local pQTLs where the influence of genetic variation is seen at all threemolecular layers. Left: LOD scores obtained from caQTL, eQTL, and pQTL

scans for the target gene are plotted for the peak chromosome, with the target gene’s location annotated on the x axis. Right: haplotype effects inferred at the

caQTL, eQTL, and pQTL peaks are shown.

(D) Histogram showing that many distant pQTLs localize to specific genomic hotspots.

(E) The effect of one local pQTL is propagated across all protein subunits of the replication complex. Left: RPA1, RPA2, and RPA3 LOD scores are plotted for Chr 6

(x axis) and show a shared pQTL peak at the location of the Rpa3 gene. Right: the inferred allele effects at the peak for all three proteins show high concordance.

(F) Graphical overview of the different classes of pQTLs based on their effects on one or more molecular layers. Layers lacking impact (no QTLs with LOD > 5 and

matching allele effects) are depicted in gray.

See also Figure S4 and Tables S5 and S6.
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of Rpa3 and protein abundance of all 3 subunits. Indeed, media-

tion analysis identifies RPA3protein abundance as the bestmedi-

ator of the RPA1 and RPA2 pQTLs. Rather than RPA3 being an

active regulator of RPA1 andRPA2, though, the local variant likely

decreases RPA3 expression and causes it to be the limiting sub-

unit of the stable replication complex, with any unbound RPA1

and RPA2 proteins likely being degraded.

Protein QTLs can be broadly classified by their genomic loca-

tion and whether they are most likely to affect transcriptional or

post-transcriptional processes (Figure 4F). Most local pQTLs

(84%, n = 851 out of 1,056) appear to stem from transcriptional

variants acting in cis to affect local chromatin accessibility and/

or transcript abundance of the protein-encoding gene; 48%

(n = 483 out of 1,056) show similar genetic effects with local

eQTLs and caQTLs, 8% (n = 80 out of 1,056) share a similar local

caQTL, and 16% (n = 288 out of 1,056) share a similar local eQTL.

In stark contrast, distant pQTLs primarily affect protein abun-

dance without influencing transcript abundance or chromatin

accessibility (82%, n = 476 out of 621), and mediation analysis

suggests these unique trans effects on protein abundance can

stem from physical interactions between binding partners and

complex members. In summary, these data demonstrate that

the high variability in the proteome observed across DO mESCs

is highly heritable, genetic variants driving protein-level differ-

ences are numerous and widespread throughout the genome,

and the genomic location of a pQTL relative to its target protein

is predictive of its regulatory effects, with most local pQTLs influ-

encing transcriptional processes, while most distant pQTLs

confer post-transcriptional effects. These protein-specific ef-

fects of distant pQTLs highlight the importance of post-tran-

scriptional regulation and physical interactions among proteins

to the quantitative proteome in mESCs.

Integration of the proteome with the chromatin
landscape and transcriptome reveals signatures
spanning multiple layers of biological regulation
The extensive co-variation observed within and among the

mESC proteome, transcriptome, and chromatin accessibility,

along with numerous shared QTLs that appear to affect more

than 1 of these regulatory layers, suggest the presence of 1 or

more overarching regulatory signatures that co-vary among the

genetically diverse DO mESC lines. To characterize these sour-

ces of variationmore fully, we appliedMOFA21,22 to integrate and

map our three genomic datasets onto a smaller set of latent fac-

tors—akin to principal components—that explain a significant

proportion of the variation across mESC lines (see STAR

Methods). For this analysis, we included a subset of the 15,000

most variable regions of open chromatin along with the complete

sets of expressed transcripts (n = 14,405) and proteins

(n = 7,432). We identified 23 latent factors that capture variation

within and across the multi-omics data (Figure 5A; Table S7).

Several of the latent factors correlate with biological variables

that we previously identified as major drivers of variation,

including chromosomal sex (factors 1, 10, 16, 18, 20;

FDR < 0.05) and genotype at the Lifr locus (factors 3, 8, 14, 18,

221). Factors differ in the degree of variation they explain both

within and across datasets, and 7 factors capture variability

spanning at least 2 or more layers of genomic data. For example,

factor 4 captures 5.4% of the observed variation in transcript

abundance but also explains 0.33% of variation in chromatin

accessibility (Figure 5A). Factor 4 combines information across

hundreds of transcripts with thousands of chromatin sites (Fig-

ure S5). Other factors capture variation across all 3 layers; e.g.,

factor 14 explains a small amount of variation for thousands of

chromatin peaks (1.7%), transcripts (0.8%), and proteins

(0.6%) (Figures 5A and S5). In all, the 23 MOFA factors explain

27%, 41%, and 36% of the variation in chromatin accessibility,

transcript, and protein abundance, respectively.

We further dissected the regulatory signatures captured by

each MOFA factor through functional annotation of their molec-

ular drivers. This included enrichment of biological processes

and pathways among protein and transcript drivers ranked by

factor weights, and overrepresentation of transcription factor

binding sites in the genomic sequences underlying chromatin

peaks. Significantly, for 7 of the 23 factors, we find overrepresen-

tation of binding sites associated with the core pluripotency fac-

tors NANOG, SOX2, and OCT4 in the sequences of their top

ATAC-seq peak drivers (Figure 5A). For 3 factors, including fac-

tor 3, we find enrichment for genes involved in the regulation of

pluripotency maintenance, such as response to LIF. Together,

this functional evidence shows that MOFA factors are capturing

variation across the molecular datasets that is relevant to plurip-

otency maintenance.

All but 1 of the 23 MOFA factors have a non-zero heritability

(median h2 = 0.5), indicating a strong genetic contribution to their

observed variability across mESCs. To identify genetic loci

driving these MOFA factors, we treated each factor as a quanti-

tative trait and performed QTL mapping and mediation analysis

(Figure 5B). Multiple published studies over the past decade

applied dimensionality reduction techniques and QTL mapping

to individual genomic (transcriptomic) datasets; e.g., mapping

modifiers of module eigengenes derived from WGCNA.47 We

mapped 10 significant QTLs for 6 MOFA factors (Figure 5B).

Five of these QTLs colocalize with molecular QTL hotspots

described above, including factor 3, which mapped to the Lifr lo-

cus1 (Figure 5A). MOFA21,22 identified additional transcripts and

proteins that individually did not have significant association with

the Chr 15 QTL but were significant contributors to factor 3. Ex-

amination of their individual eQTLs and pQTLs showed evidence

for sub-threshold genetic association and allele effects that are

consistent with regulation by the Lifr locus (Figure 5C). MOFA

factor 4, which captures a large amount of variation in transcript

abundance, mapped to the eQTL hotspot on Chr 10. Genes

mapping to this QTL include those that are upregulated in the

rare two-cell-like cell (2CLC) state and are predicted to be regu-

lated by Duxf31. Based on their contribution to factor 4 and

shared genetic effects at the locus, we identified additional

target genes known to be upregulated in the 2CLC state

(n = 13) including Zscan4e and Tcstv1 that individually lack sig-

nificant QTLs (Figure 5D).48 Mediation analysis identifies

Gm20625 transcript abundance and not Duxf3 as the best

candidate regulator for this MOFA factor QTL on Chr 10 (Fig-

ure 5E). Further, we identified 2 single-nucleotide variants near

Gm20625 (rs49316493, rs265937729) that reside in annotated

regulatory regions active in ESCs and that both exhibit a founder

strain genotype patternmatching the observed genetic effects at
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the QTL. These data implicate the predicted lncRNA Gm20625

as potentially playing a regulatory role in the transition between

the mESC and 2CLC states. Finally, we mapped novel QTLs

for 2 of the MOFA factors (Figure 5B), including a QTL for factor

14 on Chr 16 that influences hundreds of features across all 3

molecular layers. Mediation analysis fails to identify strong tran-

script or protein candidates at these novel loci, perhaps suggest-

ing that 1 or more may be due to causal variants that affect the

Figure 5. MOFA reveals broad regulatory signatures that encompass multiple layers of data

(A) MOFA yielded 23 latent factors that capture variation in one or more layers of genomic data. For each factor, percentage of variation explained in chromatin

accessibility, transcript abundance, and protein abundance is displayed as a heatmap, as is the correlation of each factor to sample covariates including sex and

Lifr genotype. On the right, a heatmap indicates overrepresentation of pluripotency regulator binding sites (NANOG, OCT4 [Pou5f1], and SOX2) among the top

chromatin drivers of each factor.

(B) Above: Depiction of QTLmapping withMOFA factors to identify genetic modifiers of sharedmolecular variation. Below: Table of QTL peaks for MOFA factors.

Loci previously identified as QTL hotspots are denoted in the ‘‘Type’’ column.

(C) For all proteins, the LOD score calculated at the Chr 15 pQTL peak is plotted (y axis) relative to the protein’s contribution (factor weight) to MOFA factor 3

(x axis). Proteins with absolute factor weights <0.1 were filtered. For each protein, color corresponds to the correlation between allele effects at the Chr 15 pQTL

and the factor 3 QTL. Individual proteins that mappedwith a significant pQTL are colored gray, and highlight that many proteins contribute substantially to factor 3

and show high agreement in allele effects at the Chr 15 peak (dark red and blue), despite individually not mapping with a significant pQTL.

(D) For each expressed transcript, LOD score at the Chr 10 eQTL peak is plotted (y axis) relative to that transcript’s contribution to factor 4 (x axis). Transcripts with

absolute factor weights <0.1 were filtered, and points are colored as described in (C). Many transcripts contribute to factor 4 and have correlated allele effects at

the Chr 10 QTL, despite failing to map individually with a significant Chr 10 eQTL.

(E) Genome-wide LOD scores obtained from the factor 4 QTL scan are plotted with mediation results overlaid. Duxf3 expression was previously identified as a

strong candidate mediator for the eQTL hotspot in this region1 but performs poorly as a mediator of the factor 4 QTL compared with Gm20625. Both genes are

highlighted in green next to their corresponding LOD score drop.

See also Figure S5 and Table S7.
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structure or function of the regulatory protein (e.g., missense

variant) rather than its abundance in mESCs. Altogether, these

examples highlight the power of multi-omics data integration

and factor analysis to reveal higher-order regulatory signatures,

identify additional genes as targets (factor 3) and mediators (fac-

tor 4) of previously mapped QTL hotspots, and discover novel

loci that influence variation across all 3 molecular layers (factors

12 and 14).

DISCUSSION

We carried out a comprehensive genetic characterization of the

pluripotent proteome in 190 genetically diverse DOmESC lines.

Our data reveal that the proteome is highly variable across lines,

and genetic background and sex are major drivers of this vari-

ation. We previously identified significant sex differences in

gene expression stemming largely from X chromosome

dosage,1 and here we find that these differences are carried

through to protein abundance.28,29 GSVA identified multiple

pluripotency and differentiation pathways that vary in activity

across mESCs, including tRNA modification,49 regulation of

histone acetylation,50 intermediate filament organization,51

glutathione biosynthesis,52–54 Golgi vesicle transport,55 hippo

signaling,56,57 and JUN kinase activation58 (Table S3). Of

note, variation in these pathways is uniquely observed in the

proteomics data.

Protein abundance is highly heritable, and we mapped pQTLs

for more than 20% of all detected proteins. Most pQTLs map

close to the protein-encoding gene (local pQTLs) and are also

detected with concordant allele effects for gene transcript abun-

dance and/or local chromatin accessibility. We found 680 pro-

tein-coding genes with significant local eQTLs but not corre-

sponding local pQTLs. This discordance may stem in part from

limitations in mapping power; however, it may also indicate buff-

ering of protein levels against transcriptional variation. Indeed,

post-transcriptional regulation is most evident among the 621

distant pQTLs, very few of which have corresponding distant

eQTLs. We found evidence for stoichiometric buffering among

themembers of a number of complexes, including the replication

complex, where genetic variation influencing 1 subunit (RPA3) is

propagated to other members (RPA1, RPA2). More broadly, our

observations of high variability in the quantitative proteome

across lines and modest correlation between transcriptome

and proteome within lines do not appear to be unique to mESCs.

Similarly high discordance between the transcriptome and pro-

teome was observed in a recent study of 217 human iPSC lines,9

and the authors pointed to stoichiometry as a likely mechanism

to propagate local genetic effects on a single subunit to

other members of a complex. These unique distant pQTLs

reveal post-transcriptional genetic interactions that are not

detectable in transcriptome data, emphasizing recent findings

of the importance of post-transcriptional regulation in pluripo-

tency maintenance.59

Comparison of protein abundance with our earlier genetic

study of transcript abundance and chromatin accessibility1 re-

vealed extensive co-variation across molecular layers. We

utilized MOFA21,22 to integrate the proteomics data with chro-

matin accessibility and transcript abundance to explore this

co-variation more thoroughly. MOFA is a logical extension of

common dimensionality reduction techniques such as WGCNA

that identify co-expressed modules of genes in transcriptome

data.60 Characterization of the 23MOFA factors revealed shared

variation in gene regulatory signatures influencing pluripotency

maintenance and correlated with chromosomal sex and Lifr ge-

notype. Genetic mapping and mediation of the MOFA factors

identified candidate regulatory genes underlying these multi-

omics signatures. We mapped QTLs for MOFA factors that co-

localize to both known molecular QTL hotspots and novel loci

and in the process identified new genes as putative targets for

QTL hotspots based on their significant contributions to MOFA

factors and concordant allele effects between molecular and

MOFA QTLs. With advances in technology and decreases in

cost, multi-omics profiling has emerged as a popular tool for

studying gene regulation. As demonstrated here and elsewhere,

integration across multiple layers of genomic data can increase

our power to detect and accurately quantitate regulatory signa-

tures underlying cell state and developmental progression.61

Finally, this study revealed variation in protein levels in several

known regulators of pluripotency and lineage differentiation,

underscoring the labile nature of the pluripotent state across

these genetically diverse mESC lines that may span cell states

ranging from totipotent 2CLCs to those that are poised for differ-

entiation to 1 or more cell lineages. The observed variability in

levels of regulatory proteins and multi-omic signatures across

these bulk mESC samples may reflect differences in cell state

composition. Higher expression of 2CLC-associated genes, for

example, likely indicate lines having a relatively higher proportion

of cells in this rare totipotent state. Single-cell platforms will be

required to measure the extent to which cellular heterogeneity

contributes to the phenotypic variability observed across genet-

ically diverse ESCs. While single-cell transcriptomics and chro-

matin profiling are now reasonably mature technologies, our

study indicates that the picture may remain incomplete without

the addition of single-cell proteomics data. Finally, previous

work has suggested that differences in differentiation capacity

and developmental progression can originate directly at the

naive state.20 How the genetic variation and variable gene regu-

latory states observed among DO mESCs influence their ability

to differentiate into various cell lineages remains largely unex-

plored. Future studies will seek to characterize whether and

how these molecular QTLs in mESCs act to bias cell fate deci-

sions or transcriptional regulation in downstream cell lineages.

Limitations of the study
Our interpretation of the mESC proteome is tempered by known

limitations inherent in the proteomics technology and genetic

mapping methods. Current untargeted mass spectrometry plat-

forms are biased against transmembrane proteins and lowly ex-

pressed genes (Figure 1B) including many transcription factors.

As such, we failed to detect some important regulators of plurip-

otency, including LIFR and NANOG. Furthermore, sample size is

a limitation in any QTL mapping study, as high numbers of sam-

ples are required to detect QTLs having subtle effects.62 While

our DO mESC panel is of similar size to previous DO mapping

studies and well powered to detect local pQTLs, our ability to

detect distant pQTLs is limited to those having the largest effects
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on protein abundance; e.g., those proteins affected by the Lifr lo-

cus. Finally, mediation analysis is a powerful tool in the genetic

toolkit and enabled us to predict numerous protein mediators

of distant pQTL effects. However, its ability to detect mediators

of distant QTLs is limited to those variants that affect the expres-

sion levels of the protein or transcript mediator. Distant QTLs

arising from variants that disrupt the structure or function of a

protein intermediate will be missed by mediation analysis.

Thus, a complete understanding of the protein regulatory map

underlying pluripotency will require targeted approaches or ad-

vances in the sensitivity of untargeted proteomics platforms,

increased sample sizes in mapping studies to detect subtle ge-

netic effects, and development of alternative approaches to fine-

map QTLs and resolve their underlying causal variants.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Recombinant Mouse LIF protein Isolated from Chinese Hamster

Ovary (CHO) cell line

N/A

CHIR99021 GSK-3 inhibitor Tocris Cat# 4423, CAS: 252917-06-9

PD0325901 MEK/ERK pathway inhibitor STEMCELL Technologies Cat# 72184, CAS: 391210-10-9

Pierce Protease Inhibitor Tablets Thermo Fisher A32963

Pierce Phosphatase Inhibitor Mini Tablets Thermo Fisher A32957

Trypsin Protease MS grade, Frozen Thermo Fisher 90305R200

Lys-C, Mass Spectrometry Grade Wako Chemicals Barcode#4987481427648

TMT10plex Isobaric Label reagent

Set plus TMT11-131C Label Reagent

Thermo Fisher A34808

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Fisher 23227

Deposited data

DO mESC proteomics ProteomeXchange

(http://www.proteomexchange.org)

PXD033001

DO mESC RNA-Seq and ATAC-Seq Skelly et al.1; ArrayExpress

(https://www.ebi.ac.uk/arrayexpress/)

E-MTAB-7728 (DO mESC RNA-Seq);

E-MTAB-8759 (DO mESC ATAC-Seq)

Experimental models: Cell lines

190 Diversity Outbred mESC lines Predictive Biology N/A

Experimental models: Organisms/strains

Mouse: J:DO The Jackson Laboratory JAX: 009376

Software and algorithms

lme4 Bates et al.63 https://cran.r-project.org/web/

packages/lme4/index.html

R The R Project https://www.r-project.org

tidyr Wickham et al.64 https://tidyr.tidyverse.org/

ggplot2 Wickham65 https://ggplot2.tidyverse.org/

pheatmap N/A https://cran.r-project.org/web/

packages/pheatmap/index.html

bowtie v1.1.2 Langmead et al.66 https://bowtie-bio.sourceforge.net/index.shtml

gbrs v0.1.6 Choi et al.67 https://churchill-lab.github.io/gbrs/

ComBat Johnson et al.68 https://doi.org/10.1093/biostatistics/kxj037

DOQTL Gatti et al.69 https://doi.org/10.1534/g3.114.013748

ChIPseeker Yu et al.70 https://guangchuangyu.github.io/

software/ChIPseeker/

Hmisc N/A https://cran.r-project.org/web/

packages/Hmisc/index.html

gProfiler2 Raudvere et al.71 https://biit.cs.ut.ee/gprofiler_archive3/

e106_eg53_p16/gost

WebsGestaltR Liao et al.72 http://www.webgestalt.org/

LOLA Sheffield et al.73 https://code.databio.org/LOLA/

qvalue N/A https://github.com/StoreyLab/qvalue

GSVA Hänzelmann et al.27 https://doi.org/10.18129/B9.bioc.GSVA

rstatix N/A https://rpkgs.datanovia.com/rstatix/

qtl2 Broman et al.74 https://github.com/rqtl/qtl2

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Steven C.

Munger (steven.munger@jax.org).

Materials availability
There are restrictions on the availability of Diversity OutbredmESCs used in this study due to overlap with intellectual property claims

for the Predictive Biology in vitro genetics platform. Predictive Biology, Inc. offers access to these and additional lines on a commer-

cial basis through their genetic screening and stem cell biology services.

Data and code availability
The DOmESCmass spectrometry proteomics data have been deposited in ProteomeXchange (http://www.proteomexchange.org/)

via the PRIDE partner repository (ProteomeXchange: PXD033001). The DO mESC RNA-seq and ATAC-seq data were published in1

and deposited to ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) (RNA-seq ArrayExpress: E-MTAB-7728; ATAC-seq

ArrayExpress: E-MTAB-8759).

All processed data and code to generate main and supplemental figures have been deposited to https://doi.org/10.6084/m9.

figshare.22012850.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Diversity Outbred mESC lines
Mouse embryonic stem cell lines were derived from male and female Diversity Outbred mice (JR #009376, The Jackson Laboratory)

andmaintained at Predictive Biology, Inc. as previously described.1 Briefly, at 24-26 days of age female DOmicewere superovulated

and mated to 7-15 week old males. Next, mESCs were derived from random blastocysts following previously described protocols.5

The blastocysts were transferred to 96-well round-bottom ultra-low attachment plates containing 2i medium (2i + LIF: Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 15% fetal bovine serum, 100 U/mL Penicillin-Streptomycin, 2mM GlutaMAX,

0.1mM non-essential amino acids, 1mM sodium pyruvate, 0.1mM 2-mercaptoethanol, 500pM LIF, 1uM PD0325901, and 3uM

CHIR99021) for 5-7 days. Blastocysts that showed inner cell mass outgrowth were dispersed and transferred onto 96-well flat-bot-

tom tissue culture plates containing mitotically inactivated mouse embryonic fibroblasts (MEFs, C57BL/6J) in ES medium (ESM,

1i+LIF: Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 15% fetal bovine serum, 100 U/mL Penicillin-

Streptomycin, 2mM GlutaMAX, 0.1mM non-essential amino acids, 1mM sodium pyruvate, 0.1mM 2-mercaptoethanol, approxi-

mately 2000U/ml LIF, and 3uM CHIR99021). The ES cells were weaned off feeder cells as they expanded via dilution by transferring

into 24 well plates, followed by 6 well plates and finally into 10cM dishes containing ESMwithout feeder cells. LIF protein used in the

experiments was produced by Predictive Biology using a Chinese Hamster Ovary cell line. For proteomics analysis, �100,000 cry-

opreserved DO mESCs from each line were sent from Predictive Biology to the Gygi Lab at Harvard Medical School.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bioconductor Bioconductor https://bioconductor.org

GenomicRanges Lawrence et al.75 https://bioconductor.org/packages/release/

bioc/html/GenomicRanges.html

intermediate N/A https://github.com/churchill-lab/intermediate

pcaMethods Stacklies et al.23 https://www.bioconductor.org/packages/

release/bioc/html/pcaMethods.html

MOFA Argelaguet et al.21,22 https://biofam.github.io/MOFA2/

Other

Resource website for the publication

containing all the code and data for

reproducing figures and tables

http://do_mesc_proteomics.jax.org/ N/A

Processed data (e.g., proteomics,

genotype probabilities) and code to

reproduce figures.

https://doi.org/10.6084/m9.figshare.

22012850

N/A

Gene Ontology Terms used in GSVA Mouse Genome Informatics http://www.informatics.jax.org/gotools/

data/input/MGIgenes_by_GOid.txt
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METHOD DETAILS

Sample preparation for proteomics analysis
Frozen cell pellets were resuspended in 8 M Urea, 200 mM EPPS, pH 8.5, with protease inhibitor, and lysed by passing through a

21-gauge needle with syringe. After centrifugation at 13,000 rpm at 4�C for 10min, supernatant was used for further analysis.

BCA assay was performed to determine protein concentration of each sample. Samples were reduced in 5 mM TCEP for 15min, al-

kylated with 10 mM iodoacetamide for 15min, and quenched with 15 mM DTT for 15min. 200 mg protein was chloroform-methanol

precipitated and re-suspended in 200 mL 200mM EPPS (pH 8.5). Protein was digested by Lys-C at a 1:100 protease-to-peptide ratio

overnight at room temperature with gentle shaking. Trypsin was used for further digestion for 6 hours at 37�C at 1:100. 100 mL of each

sample were aliquoted. 30 mL acetonitrile (ACN) was added into each sample to 30% final volume. 200 mg TMT reagent (126, 127N,

127C, 128N, 128C, 129N, 129C, 130N, 130C, 131N) in 10 mL ACN was added to each sample. After 1 hour of labeling, 2 mL of each

sample was combined, desalted, and analyzed using mass spectrometry. TMT labeling efficiency was calculated and over 99%. Af-

ter quenching using 0.3% hydroxylamine, 10 samples in each TMT were combined and fractionated with basic pH reversed phase

(BPRP) high performance liquid chromatography (HPLC), collected onto a 96 six well plate and combined for 24 fractions in total.

Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).76

Liquid chromatography and tandem mass spectrometry
For the BPRP fractions, mass spectrometric data were collected on an Orbitrap Fusion mass spectrometer coupled to a Proxeon

NanoLC-1200 UHPLC. The 100 mm capillary column was packed with 35 cm of Accucore 50 resin (2.6 mm, 150Å; ThermoFisher Sci-

entific). The mobile phase was 5% acetonitrile, 0.125% formic acid (A) and 95% acetonitrile, 0.125% formic acid (B). The data were

collected using a DDA-SPS-MS3method. Each fraction was eluted using a 150 minmethod over a gradient from 6% to 30%B. Pep-

tides were ionized with a spray voltage of 2,600 kV. The instrument method included Orbitrap MS1 scans (resolution of 1.2 x105;

mass range 350�1400 m/z; automatic gain control (AGC) target 5x105, max injection time of 100 ms and ion trap MS2 scans

(CID collision energy of 35%; AGC target 2x104; rapid scan mode; max injection time of 120 ms). MS3 precursors were fragmented

by HCD and analyzed using the Orbitrap (NCE 65%, AGC 1 x105, maximum injection time 150 ms, resolution was 5 x104 at 400 Th).

Detailed parameters for MS2 and MS3 are embedded in the RAW files.

Mass spectrometry data analysis
Mass spectra were processed using a Sequest-based pipeline.77 Spectra were converted to mzXML using a modified version of

ReAdW.exe. Database search included all entries from an indexed Ensembl database version 98. This database was concatenated

with one composed of all protein sequences in the reversed order. Searches were performed using a 50 ppm precursor ion tolerance

for total protein level analysis. The product ion tolerance was set to 0.9 Da. TMT tags on lysine residues and peptide N termini

(+229.163Da) and carbamidomethylation of cysteine residues (+57.021Da) were set as staticmodifications, while oxidation ofmethi-

onine residues (+15.995 Da) was set as a variable modification. In addition, for phosphopeptide analysis, phosphorylation (+79.966

Da) on serine, threonine, and tyrosine are included as variable modifications. Peptide-spectrum matches (PSMs) were adjusted to a

1% false discovery rate (FDR). PSM filtering was performed using a linear discriminant analysis (LDA). For TMT-based reporter ion

quantitation, we extracted the summed signal-to-noise (S:N) ratio for each TMT channel and found the closest matching centroid to

the expected mass of the TMT reporter ion. For protein-level comparisons, PSMs were identified, quantified, and collapsed to a 1%

peptide false discovery rate (FDR) and then collapsed further to a final protein-level FDR of 1%, which resulted in a final peptide level

FDR of <0.1%. Moreover, protein assembly was guided by principles of parsimony to produce the smallest set of proteins necessary

to account for all observed peptides. Proteins were quantified by summing reporter ion counts across all matching PSMs. PSMs with

poor quality, MS3 spectra with less than 10 TMT reporter ion channels missing, MS3 spectra with TMT reporter summed signal-to-

noise of less than 100 or having noMS3 spectra were excluded fromquantification. Each reporter ion channel was summed across all

quantified proteins and normalized assuming equal protein loading of all 10 samples. The mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with dataset identifier PXD033001.

Protein abundance estimation
Protein abundances were estimated as described previously.17 Briefly, peptides that contain polymorphisms were filtered and TMT

batch effects were removed from the filtered peptide data using a linear mixed model fit with the R/lme4 package.63 Finally, protein

abundanceswere estimated and normalized using the processed peptide data as described in detail in Keele et al.17 Proteinsmissing

values in more than 50% of the samples were removed from further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses and figures were generated with the R statistical programming language and are available at the following web resource

[https://DO_mESC_proteomics.jax.org] and github [https://github.com/selcant/Aydin_et_al_website]. Unless otherwise stated R/tidyr

package was used for data processing, R/ggplot265 for plotting and R/pheatmap for heatmap plots.
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Diversity Outbred mESC RNA-seq
Raw RNA-seq data was retrieved (ArrayExpress: E-MTAB-7728) and analyzed as previously described,1 but using both paired-end

sequencing reads instead of single end. Briefly, we aligned paired-end 75 bp reads with bowtie v1.1.266 to a pooled ’’8-way’’ tran-

scriptome containing strain-specific isoform sequences from all eight DO founder strains, then resolved multi-mapping reads and

estimated transcript- and gene-level abundance for each sample using the EMASE method as implemented in gbrs v0.1.6.67,78

Genes with a median TPM (transcripts per million) value smaller than 0.5 or zero value (i.e., not expressed) in more than half of

the samples were filtered. Next, we normalized gene-level counts to the upper quartile value to account for differences in library

size and then applied the ComBAT function from R/sva package to remove batch effects caused by library preparation.68 For

QTL mapping, we transformed normalized values to rank normal scores using rankZ normalization as implemented in the DOQTL

R package.69 Finally, sample mix-ups were resolved by comparing the genotypes inferred from the RNA-seq data using gbrs

v0.1.6 (http://churchill-lab.github.io/gbrs/) to genotypes inferred from DNA microarrays (GigaMUGA platform, Neogen Geneseek).

Diversity Outbred mESC ATAC-seq
Normalized ATAC-seq peak values from Skelly et al.1 were further processed using the ComBAT function in the R/sva package to

remove any potential batch effects caused by library preparation.68 Normalized, batch-corrected peak values were used in all cor-

relation analyses. For QTL mapping, these values were further transformed to rank normal scores using the rankZ function from the

DOQTL package.69 For annotation of ATAC-seq peaks we utilized the ChIPseeker R package.70

Gene annotations and id matching across data sets
Transcript abundance data was annotated to Ensembl gene identifiers, proteomics data was annotated to Ensembl protein identi-

fiers, and ATAC-seq data was annotated to Ensembl gene ids using ChIPSeeker R package. We used ENSEMBL v98 to add gene

annotations such asMGI symbol, gene location, and gene biotype. MGI symbol was used as the identifier for all downstream analysis

such as overrepresentation and gene set enrichment.

Correlation analysis
We used the rcorr function from the R/Hmisc package to calculate Pearson correlations. Individual p-values were adjusted for mul-

tiple testing using the p.adjust function in R/base and specifying the Benjamini-Hochberg ("BH") option to estimate the false discov-

ery rate (FDR).

Sample-to-sample correlation for protein abundance

For proteome-to-proteome comparisons, we used the abundance of 7,432 proteins across 190 cell lines. To compare chromatin

accessibility profiles to the proteome, we used 36,859 ATAC-seq peaks annotated to 6,865 proteins and their corresponding protein

abundances in 163 cell lines for which ATAC-seq, transcriptomics and proteomics were profiled. Similarly, for comparing the tran-

scriptome to the proteome across 174 cell lines that had both RNA-seq and proteomics data, we used the overlapping set of 7,241

genes with both transcript and protein abundance measures.

Correlation between chromatin accessibility and protein abundance

Pairwise Pearson correlations were calculated between the abundance of 7,148 autosomal proteins and the chromatin accessibility

of 99,159 autosomal ATAC-seq peaks across 163 cell lines for which ATAC-seq, transcriptomics and proteomics were profiled. We

excluded sex chromosome proteins and ATAC-seq peaks from the analysis.

Correlation between transcript and protein abundance for individual genes

Pairwise Pearson correlations were calculated for 7,241 genes with both transcript and protein abundance measures across 174 cell

lines that had both RNA-seq and proteomics data.

Correlation between complex member and non-complex member proteins

The list of complex member proteins was retrieved from33 which includes protein complexes manually curated using CORUM and

COMPLEAT databases. Pairwise Pearson correlations between protein abundances of complex member and non-complex member

genes were calculated for complexes with five or more subunits (n = 164) excluding proteins with significant pQTL to leave out large

genetic effects that may not be shared among complex members.

Correlation between complex members

For each protein complex (n = 164), the median pairwise Pearson correlation between an individual protein subunit and the other

members are calculated. Complex cohesiveness was then calculated as the median value of the correlations for the individual pro-

teins. For each complex, sex effects were assessed by a one-way ANOVA followed by a t-test comparing the median complex

co-abundances in XY and XX samples. P-values were adjusted using the p.adjust function in R/base and specifying the

Benjamini-Hochberg (‘‘BH’’) option to estimate the false discovery rate (FDR) (n = 164 tests). Complexes that show a significant effect

( p-value < 0.05) in both statistical tests were reported.

Gene set enrichment and overrepresentation analysis
We performed overrepresentation analysis using the ‘gost’ function in the gProfiler2 package by controlling the version using

‘set_base_url(https://biit.cs.ut.ee/gprofiler_archive3/e106_eg53_p16)’ in R71 using an appropriate universal background on a

case-by-case basis and ‘fdr’ option for p-value correction. For example, when looking at the functional enrichments in proteins
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with high variation all genes identified in proteomics were used whereas only the shared set of genes between RNA-seq and prote-

omics was used when looking at genes with positive correlation between transcript and protein abundance. For gene set enrichment

analysis, we used the WebsGestaltR R package.72 To identify overrepresentation of genomic regions we utilized R package LOLA73

which looks at the overlap between user data sets and public genomic data sets like transcription factor binding sites from ENCODE

and the CODEX database. Following instructions of the R/LOLA package the p-values were transformed to q-values using the

R/qvalue package to get FDR values.

Gene set variation analysis
WeperformedGene Set Variation Analysis using the R/Bioconductor packageGSVA27GeneOntology termswith gene symbols were

retrieved fromMGI (http://www.informatics.jax.org/gotools/data/input/MGIgenes_by_GOid.txt) which included 8,436 GO Biological

Process gene sets. List of protein complexes and subunits was retrieved from33 which includes protein complexes manually curated

using CORUM and COMPLEAT databases (n = 164). Enrichment scores were calculated using the abundance of 7,432 proteins

across 190 cell lines for each gene set with at least 5 overlapping proteins (n = 900 GO terms and n = 158 complexes). Next, we eval-

uated the significance of enrichment scores across experimental covariates using a two-way ANOVA (� sex + Lifr genotype + sex:Lifr

genotype) where individual p values were corrected for multiple testing using the p.adjust function in R/base and specifying the

Benjamini-Hochberg ("BH") option and followed by Tukey’s HSD using R/rstatix package for pairwise comparisons (n = 1,058 tests).

Categories that showed significance in both statistical tests were reported with the p value obtained from Tukey’s HSD. Similarly,

GSVA was performed using transcript abundances to calculate enrichment scores using the abundance of 14,405 genes across

184 cell lines for each gene set with at least 5 overlapping genes (n = 2,094 GO terms).

Quantitative trait locus mapping
Genetic mapping was performed using a linear-mixed model implemented as the ‘scan1’ function in R/qtl2 package.74 We mapped

using the normalized, transformed values with sex as a covariate and the Leave One Chromosome Out (loco) option for kinship

correction.69 To estimate genome-wide significance, we permuted genotypes 1000 times while maintaining the relationship between

the phenotype and covariates. For each permutation we retained the maximum LOD score in order to generate a null distribution for

the test statistic.79 To calculate thresholds for pQTL, we repeated this permutation strategy for all proteins and estimated a signif-

icance cutoff at LOD > 7.5 (alpha = 0.05), and a suggestive cutoff at LOD > 6. False discovery rates (q-values) were determined

for each permutation-derived p-value with R/qvalue software, using the bootstrap method to estimate p0 and the default l tuning

parameters.80 Support intervals for each QTL were defined by the 95% Bayesian credible interval.81 We call a QTL ’local’ if the

QTL peak is within ±10 Mbp to the midpoint of its corresponding gene and ’distal’ if otherwise. Founder allele effects were estimated

as best linear unbiased predictors (BLUPs) at the QTL using scan1blup function in R/qtl2 package. Previous work has estimated the

genome-wide significance threshold at 7.6 and 7.5 for chromatin accessibility QTL (caQTL) and expression QTL (eQTL) respectively.1

To identify overlaps with significant pQTL, we used a relaxed threshold of LOD > 5 for caQTL and eQTL. They were classified as

shared if the QTL peaks were within +/-5 Mb of the significant pQTL peak and the absolute correlation between haplotype effects

was higher than 0.5.

Defining QTL hotspots
We first identified distal QTL that reach genome-wide permutation-based threshold (p < 0.05; LOD 7.5). Next, we applied a sliding

window method to identify hotspots as described in Skelly et al.1 Briefly, we counted the number of distal QTL within 1cM windows

(0.25 cM shift) across the genome and selected the top 0.5% of bins with the most distant pQTL (0.5% bin threshold R8 distant

pQTLs). Final coordinates for each hotspot were determined using the Bioconductor package ’GenomicRanges’ to merge adjacent

bins into a single region.75

Mediation analysis
We usedmediation analysis to identify regions of open chromatin, transcript, and protein abundance that were likely to be the causal

mediator of a caQTL, eQTL, or pQTL. Mediation analysis was performed using the ’intermediate’ package in R (https://github.com/

simecek/intermediate) by regressing each target (T) on a mediator (M) at the QTL (Q) and adjusting for covariates. We applied the

’double-lod-diff’ method to reduce the effects of missing values. For mediation of QTL with the matching data type we used

the full sample set, e.g., pQTL mediation by proteins (QpQTL / ProteinM / ProteinT) were done using all the 190 samples. On

the other hand, mediation across data types were done on common set of samples e.g., for mediation between protein and transcript

(QpQTL / TranscriptM / ProteinT | QeQTL / ProteinM / TranscriptT) only the 174 samples with both protein and transcript mea-

surements were used. To assess the significance of a LOD drop, we mediated the QTL against all of the mediator data, converted

the recorded LOD scores to normal scores, and checked if the score fell below 6 standard deviations from the mean.11 Mediators

were further filtered to narrow down top candidates to include genes with midpoints that are found within 10Mb of the QTL peak.

Data integration and multi-omics factor analysis
For data integration we used Multi-Omics Factor Analysis (MOFA) implemented in Python (mofapy2) and in R (MOFA2).21,22 MOFA

integrates multi-omics data sets in an unsupervised fashion using a factor analysis model and infers interpretable latent factors. All
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transcripts (n = 14,405), proteins (n = 7,432) and the most variable 15,000 ATAC-seq peaks based on total variance were used for

integration from 163 cell lines with all three molecular measurements. All three datasets were log transformed using base R function

log1p beforemodeling withMOFA. For model generation, wemodified the following options from default: we set number of factors to

30, number of maximum iterations to 10,000, convergence mode to ‘‘slow’’ and scale views option to TRUE. The model with the best

convergence based on the evidence lower bound statistic (ELBO) was saved for further analysis. Next, factors that showed a signif-

icant correlation to the total number of expressed features and that didn’t explain more than 1% variation in at least one data set were

removed resulting in 23 latent factors. We used the calculate_variance_explained and correlate_factors_with_covariates functions in

the MOFA2 R package to calculate the proportion of variance explained by factor per data set and correlations between factors and

experimental covariates, respectively. Functional characterization of MOFA Factors was done using the R/LOLA package for top

ATAC-seq peak drivers and the R/WebsGestaltR package for transcripts and proteins. Top ATAC-seq drivers were obtained using

the base R boxplot.stats function where the outliers correspond to data points that lie outside 1.5 times the interquartile range.MOFA

factor weights were used to rank genes in enrichment analysis for transcripts and proteins. MOFA Factor values were rankZ trans-

formed and QTL mapping, mediation, and permutation analysis with factors were done as described above using genotype proba-

bilities from the 163 samples used in MOFA.
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