36 research outputs found

    Novel TRIM32 mutation in sarcotubular myopathy

    Get PDF
    Tripartite motif-containing protein 32 (TRIM32) is a member of the TRIM ubiquitin E3 ligases which ubiquitinates different substrates in muscle including sarcomeric proteins. Mutations in TRIM32 are associated with Limb-Girdle Muscular Dystrophy 2H. In a 66 old woman with disto-proximal myopathy, we identified a novel homozygous mutation of TRIM32 gene c.1781G > A (p. Ser594Asn) localised in the c-terminus NHL domain. Mutations of this domain have been also associated to Sarcotubular Myopathy (STM), a form of distal myopathy with peculiar features in muscle biopsy, now considered in the spectrum of LGMD2H. Muscle biopsy revealed severe abnormalities of the myofibrillar network with core like areas, lobulated fibres, whorled fibres and multiple vacuoles. Desmin and Myotilin stainings also pointed to accumulation as in Myofibrillar Myopathy. This report further confirms that STM and LGMD2H represent the same disorder and suggests to consider TRIM32 mutations in the genetic diagnosis of Sarcotubular Myopathy and Myofibrillar Myopathy

    Nusinersen mitigates neuroinflammation in severe spinal muscular atrophy patients

    Get PDF
    Background: Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, but has not been specifically investigated in patients affected by severe and milder forms of spinal muscular atrophy (SMA). Methods: In this two-center retrospective study, we investigated signatures of neuroinflammation in forty-eight pediatric male and female SMA1 (n = 18), male and female SMA2 (n = 19), and female SMA3 (n = 11) patients, as well as in a limited number of male and female non-neurological control subjects (n = 4). We employed a Bio-Plex multiplex system based on xMAP technology and performed targeted quantitative analysis of a wide range of pro- and anti-inflammatory cytokines (chemokines, interferons, interleukins, lymphokines and tumor necrosis factors) and neurotrophic factors in the cerebrospinal fluid (CSF) of the study cohort before and after Nusinersen treatment at loading and maintenance stages. Results: We find a significant increase in the levels of several pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-2, IL-8, IL-12, IL-17, MIP-1α, MCP-1, and Eotaxin) and neurotrophic factors (PDGF-BB and VEGF) in the CSF of SMA1 patients relative to SMA2 and SMA3 individuals, who display levels in the range of controls. We also find that treatment with Nusinersen significantly reduces the CSF levels of some but not all of these neuroinflammatory molecules in SMA1 patients. Conversely, Nusinersen increases the CSF levels of proinflammatory G-CSF, IL-8, MCP-1, MIP-1α, and MIP-1β in SMA2 patients and decreases those of anti-inflammatory IL-1ra in SMA3 patients. Conclusions: These findings highlight signatures of neuroinflammation that are specifically associated with severe SMA and the neuro-immunomodulatory effects of Nusinersen therapy

    Nusinersen Induces Disease-Severity-Specific Neurometabolic Effects in Spinal Muscular Atrophy

    Get PDF
    Intrathecal delivery of Nusinersen-an antisense oligonucleotide that promotes survival motor neuron (SMN) protein induction-is an approved therapy for spinal muscular atrophy (SMA). Here, we employed nuclear magnetic resonance (NMR) spectroscopy to longitudinally characterize the unknown metabolic effects of Nusinersen in the cerebrospinal fluid (CSF) of SMA patients across disease severity. Modulation of amino acid metabolism is a common denominator of biochemical changes induced by Nusinersen, with distinct downstream metabolic effects according to disease severity. In severe SMA1 patients, Nusinersen stimulates energy-related glucose metabolism. In intermediate SMA2 patients, Nusinersen effects are also related to energy homeostasis but involve ketone body and fatty acid biosynthesis. In milder SMA3 patients, Nusinersen mainly modulates amino acid metabolism. Moreover, Nusinersen modifies the CSF metabolome of a more severe clinical group towards the profile of untreated SMA patients with milder disease. These findings reveal disease severity-specific neurometabolic signatures of Nusinersen treatment, suggesting a selective modulation of peripheral organ metabolism by this CNS-directed therapy in severe SMA patients

    The SPTLC1 p.S331 mutation bridges sensory neuropathy and motor neuron disease and has implications for treatment

    Get PDF
    Aims SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. Methods We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. Results In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. Conclusions Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental

    Structured Light Plethysmography for Non-Invasive Assessment of Respiratory Pattern in Spinal Muscular Atrophy Type 1.

    No full text
    Background: Spinal muscular atrophy (SMA) type 1 is a severe condition leading to early respiratory failure. Treatment options have become available, yet respiratory outcome measures in SMA type 1 are limited. The aim of this study was to assess the respiratory pattern in SMA type 1 patients via structured light plethysmography (SLP). SLP measures the thoraco-abdominal movements by projecting a light grid onto the anterior thoraco-abdominal surface. Methods: Cross-sectional study of consecutive children with SMA type 1. All children underwent motor assessment (CHOP-INTEND) and one-minute tidal breathing recording by SLP in supine position while self-ventilating in room air. The Respiratory rate, the abdominal vs. chest contribution to breath (Relative Expired Abdomen%, Relative Expired Chest%) and the severity of thoraco-abdominal paradox (Phase Angle) were acquired. Results: Nineteen patients were included, median (IQR) age 2.3 years (1.4-7.9). Their respiratory pattern captured via SLP showed a raised median (IQR) respiratory rate per age of 33.5 bpm (26.6-41.7), a prevalent abdominal contribution to tidal breathing with median (IQR) Relative Expired Abdomen 77% (68-90) vs. Chest 23% (10-32). Thoracoabdominal paradox was detected (median Phase Angle 48.70°) and its severity correlated negatively with CHOP-INTEND (r -0.8, p < 0.01). Conclusions: SLP captured and quantified the respiratory features of infants and children with SMA type 1

    Mutations in GMPPB Presenting with Pseudometabolic Myopathy

    No full text
    Mutations in the guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) gene encoding a key enzyme of the glycosylation pathway have been described in families with congenital (CMD) and limb girdle (LGMD) muscular dystrophy with reduced alpha-dystroglycan (\u3b1-DG) at muscle biopsy.Patients typically display a combined phenotype of muscular dystrophy, brain malformations, and generalized epilepsy. However, a wide spectrum of clinical severity has been described ranging from classical CMD presentation to children with mild, yet progressive LGMD with or without intellectual disability. Cardiac involvement, including a long QT interval and left ventricular dilatation, has also been described in four cases.Two missense mutations in GMPPB gene, one novel and one already reported, have been identified in a 21-year-old man presenting with elevated CK (38,650 UI/L; normal values <150 UI/L) without overt muscle weakness. Major complaints included limb myalgia, exercise intolerance, and several episodes of myoglobinuria consistent with a form of metabolic myopathy. Muscle biopsy showed only minimal alterations, whereas a marked reduction of glycosylated \u3b1-DG was evident.This case further expands the phenotypic spectrum of GMPPB mutations and highlights the importance of exhaustive molecular characterization of patients with reduced glycosylation of \u3b1-DG at muscle biopsy

    Paleogenetica e paleodemografia degli antichi abitanti di Roccapelago

    No full text
    Il progetto di studio delle mummie di Roccapelago, nato in seguito al ritrovamento, nella cripta della locale chiesa della Conversione di San Paolo Apostolo, dei resti di oltre 400 individui, molti dei quali parzialmente mummificati, ha previsto, fin dall\u2019inizio, un approccio multidisciplinare volto all'integrazione dei risultati scaturiti dalle indagini archeoantropologiche, paleodemografiche e paleopatologiche con quelli prodotti dalle analisi genetiche dei reperti. A questo scopo \ue8 stato programmato, tra l\u2019altro, anche uno studio diacronico del DNA finalizzato a indagare la struttura e le dinamiche della popolazione di Roccapelago nell\u2019arco di circa quattro secoli, cio\ue8 dalla fase pi\uf9 antica di uso sepolcrale della cripta fino alla comunit\ue0 attualmente vivente. La selezione dei campioni oggetto dello studio ha perci\uf2 riguardato sia i reperti antichi, risalenti a un periodo compreso tra il XVI e il XVIII secolo, sia membri attuali della comunit\ue0 locale
    corecore