46 research outputs found

    Site-specific characterisation of SARS-CoV-2 spike glycoprotein receptor binding domain

    Get PDF
    The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor binding domains interaction with the glycoprotein angiotensin converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterise both N- and O- glycan site specific glycosylation within the receptor binding domain. We demonstrate the presence of complex type N-glycans with unusual fucosylated LacdiNAc at both sites N331 and N343 and a single site of O-glycosylation on T323

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Reducing socio-economic inequalities in all-cause mortality: a counterfactual mediation approach

    Get PDF
    Background: Socio-economic inequalities in mortality are well established, yet the contribution of intermediate risk factors that may underlie these relationships remains unclear. We evaluated the role of multiple modifiable intermediate risk factors underlying socio-economic-associated mortality and quantified the potential impact of reducing early all-cause mortality by hypothetically altering socio-economic risk factors.Methods: Data were from seven cohort studies participating in the LIFEPATH Consortium (total n = 179 090). Using both socio-economic position (SEP) (based on occupation) and education, we estimated the natural direct effect on all-cause mortality and the natural indirect effect via the joint mediating role of smoking, alcohol intake, dietary patterns, physical activity, body mass index, hypertension, diabetes and coronary artery disease. Hazard ratios (HRs) were estimated, using counterfactual natural effect models under different hypothetical actions of either lower or higher SEP or education.Results: Lower SEP and education were associated with an increase in all-cause mortality within an average follow-up time of 17.5 years. Mortality was reduced via modelled hypothetical actions of increasing SEP or education. Through higher education, the HR was 0.85 [95% confidence interval (CI) 0.84, 0.86] for women and 0.71 (95% CI 0.70, 0.74) for men, compared with lower education. In addition, 34% and 38% of the effect was jointly mediated for women and men, respectively. The benefits from altering SEP were slightly more modest.Conclusions: These observational findings support policies to reduce mortality both through improving socio-economic circumstances and increasing education, and by altering intermediaries, such as lifestyle behaviours and morbidities.</p

    The biology of inequalities in health: The LIFEPATH project

    Get PDF
    Socioeconomic differences in health have been consistently observed worldwide. Physical health deteriorates more rapidly with age among men and women with lower socioeconomic status (SES) than among those with higher SES. The biological processes underlying these differences are best understood by adopting a life course approach. In this paper we introduce the pan- European LIFEPATH project which uses multiple cohorts - including biomarker data - to investigate ageing as a phenomenon with two broad stages across life: build-up and decline. The ‘build-up’ stage, from conception and early intra-uterine life to late adolescence or early twenties, is characterised by rapid successions of developmentally and socially sensitive periods. The second stage, starting in early adulthood, is a period of ‘decline’ from maximum attained health to loss of function, overt disease and death. LIFEPATH adopts a study design that integrates social science and public health approaches with biology (including molecular epidemiology), using well-characterised population cohorts and omics measurements (particularly epigenomics). LIFEPATH includes information and biological samples from 17 cohorts, including several with extensive phenotyping and repeat biological samples, and a very large cohort (1 million individuals) without biological samples (WHIP, from Italy). The countries that are covered by the cohorts are France, Italy, Portugal, Ireland, UK, Finland, Switzerland and Australia. These cohorts are only a small proportion of all cohorts available in Europe, but we have chosen them for the combination of good measures of socioeconomic status, risk factors for non-communicable diseases (NCDs) and biomarkers already measured (or availability of blood samples for further testing). The majority of cohorts include ‘hard’ outcomes (diabetes, cancer, Cardiovascular Disease (CVD), total mortality), and the extensively phenotyped cohorts also include several measurements of the functional components of healthy ageing, including frailty, impaired vision, cognitive function, renal and brain function, osteoporosis, sleep disturbances and mental health. All age groups are represented with two birth cohorts, one cohort of adolescents and several cohorts encompassing young adults (age 18 and above). Furthermore, there is a strong representation of elderly subjects in seven cohorts. The specific objectives of the project are: (a) to show that healthy ageing is an achievable goal for society; (b) to improve the understanding of the mechanisms through which healthy ageing pathways diverge by SES, by investigating life course biological pathways using omic technologies; (c) to examine the consequences of the current economic recession on health and the biology of ageing (and the consequent increase in social inequalities); (d) to provide updated, relevant and innovative evidence for healthy ageing policies (particularly ‘health in all policies’) using both observational studies and an experimental approach based on a reanalysis of data from a ‘conditional cash transfer’ randomised experiment in New York and new data collected as part of an earned income tax credit randomised experiment in Atlanta and New York. To achieve these objectives, data are used from three categories of studies: 1. national census-based followup data to obtain mortality by socioeconomic status; 2. cohorts with intense phenotyping and repeat biological samples; 3. large cohorts with biological samples. With these objectives and methodologies, LIFEPATH seeks to provide updated, relevant and innovative evidence to underpin future policies and strategies for the promotion of healthy ageing, targeted disease prevention and clinical interventions that address the issue of social disparities in ageing and the social determinants of health. The present paper describes the design and some initial results of LIFEPATH as an example of the integration of social and biological sciences to provide evidence for public health policies

    Methylation-based markers of aging and lifestyle-related factors and risk of breast cancer: a pooled analysis of four prospective studies

    Get PDF
    Background DNA methylation in blood may reflect adverse exposures accumulated over the lifetime and could therefore provide potential improvements in the prediction of cancer risk. A substantial body of research has shown associations between epigenetic aging and risk of disease, including cancer. Here we aimed to study epigenetic measures of aging and lifestyle-related factors in association with risk of breast cancer. Methods Using data from four prospective case–control studies nested in three cohorts of European ancestry participants, including a total of 1,655 breast cancer cases, we calculated three methylation-based measures of lifestyle factors (body mass index [BMI], tobacco smoking and alcohol consumption) and seven measures of epigenetic aging (Horvath-based, Hannum-based, PhenoAge and GrimAge). All measures were regression-adjusted for their respective risk factors and expressed per standard deviation (SD). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional or unconditional logistic regression and pooled using fixed-effects meta-analysis. Subgroup analyses were conducted by age at blood draw, time from blood sample to diagnosis, oestrogen receptor-positivity status and tumour stage. Results None of the measures of epigenetic aging were associated with risk of breast cancer in the pooled analysis: Horvath ‘age acceleration’ (AA): OR per SD = 1.02, 95%CI: 0.95–1.10; AA-Hannum: OR = 1.03, 95%CI:0.95–1.12; PhenoAge: OR = 1.01, 95%CI: 0.94–1.09 and GrimAge: OR = 1.03, 95%CI: 0.94–1.12, in models adjusting for white blood cell proportions, body mass index, smoking and alcohol consumption. The BMI-adjusted predictor of BMI was associated with breast cancer risk, OR per SD = 1.09, 95%CI: 1.01–1.17. The results for the alcohol and smoking methylation-based predictors were consistent with a null association. Risk did not appear to substantially vary by age at blood draw, time to diagnosis or tumour characteristics. Conclusion We found no evidence that methylation-based measures of aging, smoking or alcohol consumption were associated with risk of breast cancer. A methylation-based marker of BMI was associated with risk and may provide insights into the underlying associations between BMI and breast cancer

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity

    A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study.

    Get PDF
    BACKGROUND: Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated. METHODS AND FINDINGS: We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991-1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19-0.29) adjusted for potential confounders and 0.37 (95% CI 0.27-0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential measurement error in the fatty acids and other model covariates and possible residual confounding. CONCLUSIONS: A combination of individual fatty acids, characterised by high concentrations of linoleic acid, odd-chain fatty acids, and very long-chain fatty acids, was associated with lower incidence of T2D. The specific fatty acid pattern may be influenced by metabolic, genetic, and dietary factors

    A framework for the development of effective anti-metastatic agents

    Get PDF
    Most cancer-related deaths are a result of metastasis, and thus the importance of this process as a target of therapy cannot be understated. By asking ‘how can we effectively treat cancer?’, we do not capture the complexity of a disease encompassing >200 different cancer types — many consisting of multiple subtypes — with considerable intratumoural heterogeneity, which can result in variable responses to a specific therapy. Moreover, we have much less information on the pathophysiological characteristics of metastases than is available for the primary tumour. Most disseminated tumour cells that arrive in distant tissues, surrounded by unfamiliar cells and a foreign microenvironment, are likely to die; however, those that survive can generate metastatic tumours with a markedly different biology from that of the primary tumour. To treat metastasis effectively, we must inhibit fundamental metastatic processes and develop specific preclinical and clinical strategies that do not rely on primary tumour responses. To address this crucial issue, Cancer Research UK and Cancer Therapeutics CRC Australia formed a Metastasis Working Group with representatives from not-for-profit, academic, government, industry and regulatory bodies in order to develop recommendations on how to tackle the challenges associated with treating (micro)metastatic disease. Herein, we describe the challenges identified as well as the proposed approaches for discovering and developing anticancer agents designed specifically to prevent or delay the metastatic outgrowth of cancer

    A framework for the development of effective anti-metastatic agents

    Get PDF
    Most cancer-related deaths are a result of metastasis, and thus the importance of this process as a target of therapy cannot be understated. By asking ‘how can we effectively treat cancer?’, we do not capture the complexity of a disease encompassing &gt;200 different cancer types — many consisting of multiple subtypes — with considerable intratumoural heterogeneity, which can result in variable responses to a specific therapy. Moreover, we have much less information on the pathophysiological characteristics of metastases than is available for the primary tumour. Most disseminated tumour cells that arrive in distant tissues, surrounded by unfamiliar cells and a foreign microenvironment, are likely to die; however, those that survive can generate metastatic tumours with a markedly different biology from that of the primary tumour. To treat metastasis effectively, we must inhibit fundamental metastatic processes and develop specific preclinical and clinical strategies that do not rely on primary tumour responses. To address this crucial issue, Cancer Research UK and Cancer Therapeutics CRC Australia formed a Metastasis Working Group with representatives from not-for-profit, academic, government, industry and regulatory bodies in order to develop recommendations on how to tackle the challenges associated with treating (micro)metastatic disease. Herein, we describe the challenges identified as well as the proposed approaches for discovering and developing anticancer agents designed specifically to prevent or delay the metastatic outgrowth of cancer

    The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis

    Get PDF
    Background Prior research suggested a differential association of 25-hydroxyvitamin D (25(OH)D) metabolites with type 2 diabetes (T2D), with total 25(OH)D and 25(OH)D3 inversely associated with T2D, but the epimeric form (C3-epi-25(OH)D3) positively associated with T2D. Whether or not these observational associations are causal remains uncertain. We aimed to examine the potential causality of these associations using Mendelian randomisation (MR) analysis. Methods and findings We performed a meta-analysis of genome-wide association studies for total 25(OH)D (N = 120,618), 25(OH)D3 (N = 40,562), and C3-epi-25(OH)D3 (N = 40,562) in participants of European descent (European Prospective Investigation into Cancer and Nutrition [EPIC]–InterAct study, EPIC-Norfolk study, EPIC-CVD study, Ely study, and the SUNLIGHT consortium). We identified genetic variants for MR analysis to investigate the causal association of the 25(OH)D metabolites with T2D (including 80,983 T2D cases and 842,909 non-cases). We also estimated the observational association of 25(OH)D metabolites with T2D by performing random effects meta-analysis of results from previous studies and results from the EPIC-InterAct study. We identified 10 genetic loci associated with total 25(OH)D, 7 loci associated with 25(OH)D3 and 3 loci associated with C3-epi-25(OH)D3. Based on the meta-analysis of observational studies, each 1–standard deviation (SD) higher level of 25(OH)D was associated with a 20% lower risk of T2D (relative risk [RR]: 0.80; 95% CI 0.77, 0.84; p < 0.001), but a genetically predicted 1-SD increase in 25(OH)D was not significantly associated with T2D (odds ratio [OR]: 0.96; 95% CI 0.89, 1.03; p = 0.23); this result was consistent across sensitivity analyses. In EPIC-InterAct, 25(OH)D3 (per 1-SD) was associated with a lower risk of T2D (RR: 0.81; 95% CI 0.77, 0.86; p < 0.001), while C3-epi-25(OH)D3 (above versus below lower limit of quantification) was positively associated with T2D (RR: 1.12; 95% CI 1.03, 1.22; p = 0.006), but neither 25(OH)D3 (OR: 0.97; 95% CI 0.93, 1.01; p = 0.14) nor C3-epi-25(OH)D3 (OR: 0.98; 95% CI 0.93, 1.04; p = 0.53) was causally associated with T2D risk in the MR analysis. Main limitations include the lack of a non-linear MR analysis and of the generalisability of the current findings from European populations to other populations of different ethnicities. Conclusions Our study found discordant associations of biochemically measured and genetically predicted differences in blood 25(OH)D with T2D risk. The findings based on MR analysis in a large sample of European ancestry do not support a causal association of total 25(OH)D or 25(OH)D metabolites with T2D and argue against the use of vitamin D supplementation for the prevention of T2D
    corecore