91 research outputs found

    Eco-environmental spatial characteristics of Fildes Peninsula based on TuPu models

    Get PDF
    This study applies a TuPu analysis to investigate ecological and environmental aspects of an Antarctic ice-free area, using Fildes Peninsula as an example. The TuPu unit was determined using a vector-grid mixed data model. Information from the eco-environment elements was effectively extracted, and was generalized into different classes by means of data mining technology. A series of single-factor thematic information TuPu models, such as topography, soil, animal and vegetation, and human activities for Fildes Peninsula were built in this study. The topography TuPu model contained information on elevation and slope. The soil TuPu model involved soil development stages and soil thickness information. The animal and vegetation TuPu model contained the distribution of animals, plant types, lichen cover and lichen height. The human activities TuPu model included population density and human disturbance index information. The landscape comprehensive information TuPu model of Fildes Peninsula also was established, and contains twenty-nine landscape units and twelve types of combined environments. The study quantitatively revealed the spatial morphology and correlation of the regional eco-environment based on the analysis of these TuPu models. From these models, we can draw the conclusion that there is a regular differentiation of eco-environment from the coastal bands to the central hills in Fildes Peninsula, and that the eco-environment condition of the eastern coasts is different from that of the western coasts. The eco-environmental spatial variation also differs greatly from north to south. Based on analysis of spatial correlation, the vegetation in Fildes Peninsula has the greatest correlation with human activity, and has a certain correlation with topography and soil. This research may provide a new technical approach and scientific basis for the in-depth study of Antarctic eco-environments

    Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1

    Get PDF
    Bacterial extracellular membrane vesicles (MV) are potent mediators of microbe-host signals, and they are not only important in host-pathogen interactions but also for the interactions between mutualistic bacteria and their hosts. Studies of MV derived from probiotics could enhance the understanding of these universal signal entities, and here we have studied MV derived from Limosilactobacillus reuteri DSM 17938 and BG-R46. The production of MV increased with cultivation time and after oxygen stress. Mass spectrometry-based proteomics analyses revealed that the MV carried a large number of bacterial cell surface proteins, several predicted to be involved in host-bacteria interactions. A 5 '-nucleotidase, which catalyze the conversion of AMP into the signal molecule adenosine, was one of these and analysis of enzymatic activity showed that L. reuteri BG-R46 derived MV exhibited the highest activity. We also detected the TLR2 activator lipoteichoic acid on the MV. In models for host interactions, we first observed that L. reuteri MV were internalized by Caco-2/HT29-MTX epithelial cells, and in a dose-dependent manner decreased the leakage caused by enterotoxigenic Escherichia coli by up to 65%. Furthermore, the MV upregulated IL-1 beta and IL-6 from peripheral blood mononuclear cells (PBMC), but also dampened IFN-gamma and TNF-alpha responses in PBMC challenged with Staphylococcus aureus. Finally, we showed that MV from the L. reuteri strains have an antagonistic effect on the pain receptor transient receptor potential vanilloid 1 in a model with primary dorsal root ganglion cells from rats. In summary, we have shown that these mobile nanometer scale MV reproduce several biological effects of L. reuteri cells and that the production parameters and selection of strain have an impact on the activity of the MV. This could potentially provide key information for development of innovative and more efficient probiotic products

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Protein Folding Activity of the Ribosome and Its Implication in Prion Processes

    No full text
    How the linear protein chains fold into their three-dimensional active conformation is one of the remaining puzzles of modern science. Other than molecular chaperones, ribosome - the cellular protein synthesis machinery, has also been implicated in protein folding. The active site of protein folding activity of the ribosome (PFAR) is in the domain V of the main RNA component of the large ribosomal subunit, which also constitutes the peptidyl transferase center. We have characterized the mechanism of PFAR using ribosomes or ribosome-borne folding modulators (RFMs) and human carbonic anhydrase I (HCA) as a model system. RFMs from all three kingdoms of life showed PFAR.  By multiple addition of the denatured protein in the refolding assay we demonstrate that the RFMs can recycle efficiently to assist refolding of a new batch of denatured protein. The turnover of the RFMs, which includes release of the protein substrate, takes milliseconds. Furthermore, fast kinetics of HCA refolding suggests that an early folding intermediate is the substrate for PFAR. Our results demonstrate for the first time that PFAR is catalytic. It was shown that two anti-prion drugs 6AP and GA specifically inhibit PFAR by binding to the domain V of the 23S / 25S rRNA. Using UV-crosslinking followed by primer extension we have identified the interaction sites of 6AP on domain V of 23S rRNA, which overlap with the protein binding sites, and are sensitive to mutagenesis. We find that 6AP and GA inhibit PFAR by direct competition with the substrate protein for the binding sites. Also, 6AP derivatives inhibit PFAR in the same order as their antiprion activity, 6AP8CF3 > 6AP8Cl > 6AP > 6APi. These results suggest involvement of PFAR in prion processes. To clarify the role of PFAR in prion processes, we studied HET-s prion aggregation in the presence of domain V/ IV/II of rRNA. The rRNAs, especially domain V rRNA not only reduced HET-s aggregation, but also changed the morphology of the HET-s fibrils, which became shorter and less compact. These results show that PFAR actively prevents large amyloid aggregation and thus, possibly influence prion propagation.

    Ribosomal RNA Modulates Aggregation of thePodosporaPrion Protein HET-s

    Get PDF
    The role of the nucleic acids in prion aggregation/disaggregation is becoming more and more evident. Here, using HET-s prion from fungiPodospora anserina(P. anserina) as a model system, we studied the role of RNA, particularly of different domains of the ribosomal RNA (rRNA), in its aggregation process. Our results using Rayleigh light scattering, Thioflavin T (ThT) binding, transmission electron microscopy (TEM) and cross-seeding assay show that rRNA, in particular the domain V of the major rRNA from the large subunit of the ribosome, substantially prevents insoluble amyloid and amorphous aggregation of the HET-s prion in a concentration-dependent manner. Instead, it facilitates the formation of the soluble oligomeric "seeds", which are capable of promoting de novo HET-s aggregation. The sites of interactions of the HET-s prion protein on domain V rRNA were identified by primer extension analysis followed by UV-crosslinking, which overlap with the sites previously identified for the protein-folding activity of the ribosome (PFAR). This study clarifies a missing link between the rRNA-based PFAR and the mode of propagation of the fungal prions

    Ribosomal RNA Modulates Aggregation of thePodosporaPrion Protein HET-s

    No full text
    The role of the nucleic acids in prion aggregation/disaggregation is becoming more and more evident. Here, using HET-s prion from fungiPodospora anserina(P. anserina) as a model system, we studied the role of RNA, particularly of different domains of the ribosomal RNA (rRNA), in its aggregation process. Our results using Rayleigh light scattering, Thioflavin T (ThT) binding, transmission electron microscopy (TEM) and cross-seeding assay show that rRNA, in particular the domain V of the major rRNA from the large subunit of the ribosome, substantially prevents insoluble amyloid and amorphous aggregation of the HET-s prion in a concentration-dependent manner. Instead, it facilitates the formation of the soluble oligomeric "seeds", which are capable of promoting de novo HET-s aggregation. The sites of interactions of the HET-s prion protein on domain V rRNA were identified by primer extension analysis followed by UV-crosslinking, which overlap with the sites previously identified for the protein-folding activity of the ribosome (PFAR). This study clarifies a missing link between the rRNA-based PFAR and the mode of propagation of the fungal prions
    corecore