52 research outputs found

    Test of different sensitizing dyes in dye-sensitized solar cells based on Nb2O5 photoanodes

    Get PDF
    High-performance dyes routinely employed in TiO2-based dye-sensitized solar cells (DSSCs) were tested in cells assembled using Nb2O5 nanostructure-based photoanodes. The sensitizers were chosen among both metal-complex (two Ru-based, N749 and C106, and one Zn-based dye, DNF12) and metal-free organic dyes (DNF01, DNF11 and DNF15). Two different sensitization processes were performed: the one commonly used for TiO2 photoanodes, and a new process relying on high pressure by autoclavation. The assembled cells were characterized by current density–voltage (J–V) curves under air mass (AM) 1.5 G illumination and in the dark, incident photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy. The tested cells show different proportional efficiencies of the dyes under investigation for Nb2O5- and TiO2-based devices. Furthermore, the results were compared with those obtained in our previous work using N719 anchored on Nb2O5. A remarkable efficiency value of 4.4% under 1 sun illumination was achieved by coupling the C106 dye with a nonvolatile electrolyte. This value is higher than the one attained under the same conditions by using N719

    Style, Fees and Performance of Italian Equity Funds

    Get PDF
    Using a clustering procedure,we classify Italian funds ex-post on the basis of the composition of their portfolios and find that the optimal number of clusters is equal to 4. The four groups which result from the statistical classification closely match the 4-level aggregation of the 20 ex-ante categories used by the Italian mutual funds association. We then estimate the risk-adjusted performance of Italian equity funds, using both net and gross returns and employing both one-factor CAPM benchmarks and multi-factor benchmarks. In addition to the standard Jensen's a, we measure risk-adjusted performance using the Positive Period Weighting measure (PPW), which is not influenced by managers' market-timing strategy.Using net returns (calculated after management fees and taxes but before load fees) the Italian equity funds' performance is not significantly different from zero. However, when the funds'performance is evaluated on the basis of gross returns (i.e.returns computed adding back management fees paid each year by the funds), the performance of the Italian equity funds is always positive. In particular, when both a 2-index benchmark that takes account of the funds' investments in government bonds and a 5-factor APT benchmark are considered, performance is positive and significant using both Jensen's a and the PPW. This result supports Grossman and Stiglitz's (1980) view of market efficiency, suggesting that informed investors (investment funds) are compensated for their information gathering.mutual funds; performance measures; investment style; management fees; market timing

    Screen printed Pb₃O₄ films and their application to photoresponsive and photoelectrochemical devices

    Get PDF
    A new and simple procedure for the deposition of lead (II, IV) oxide films by screen printing was developed. In contrast to conventional electrochemical methods, films can be also deposited on non-conductive substrates without any specific dimensional restriction, being the only requirement the thermal stability of the substrate in air up to 500 °C to allow for the calcination of the screen printing paste and sintering of the film. In this study, films were exploited for the preparation of both photoresponsive devices and photoelectrochemical cell photoanodes. In both cases, screen printing was performed on FTO (Fluorine-Tin Oxide glass) substrates. The photoresponsive devices were tested with I-V curves in dark and under simulated solar light with different irradiation levels. Responses were evaluated at different voltage biases and under light pulses of different durations. Photoelectrochemical cells were tested by current density⁻voltage (J-V) curves under air mass (AM) 1.5 G illumination, incident photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy

    Supplementary pension schemes in Italy: features, development and opportunities for workers

    Get PDF
    Participation in supplementary pension funds allows workers to exploit tax benefits and payroll employees to take advantage of employer contributions. The simulations reported in the paper show that these two components can considerably increase workers' retirement wealth. Data show that returns on supplementary pension funds may be greater than the revaluation rate of the so-called Trattamento di fine rapporto (Tfr, severance pay entitlements that also serve as provision for old age and are funded by workers' contributions). As for the liquidity of accrued positions, recent changes in the law give retirement wealth held in pension funds a degree of flexibility comparable to that of the Tfr. The paper shows that scale economies may be substantial. Cost moderation also requires transparency and comparability of charges and fees: they are also essential in stimulating competition and allowing workers to move freely from expensive retirement schemes to schemes charging lower fees. In this respect the limits on the portability of employer contributions discourage worker mobility across different pension schemes. Italian workers seem to overestimate the level of the future public pension. This result suggests the importance of strengthening public efforts aimed at providing workers with appropriate information, to make them aware of their retirement position.pension funds, retirement, financial education, employer contributions, management fees, TFR

    Solid solutions of rare earth cations in mesoporous anatase beads and their performances in dye-sensitized solar cells

    Get PDF
    Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. © 2015, Nature Publishing Group. All rights reserved

    Synthesis, structure, and characterization of 4,4â€Č-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Bismuth Iodide (C30H22N2)3Bi4I18, an air, water, and thermally stable 0D hybrid Perovskite with high photoluminescence ffficiency

    Get PDF
    4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) bismuth iodide (C30H22N2)3Bi4I18 (AEPyBiI) was obtained as a black powder by a very simple route by mixing an acetone solution of BiI3 and an aqueous solution of C30H22N2I2. This novel perovskite is air and water stable and displays a remarkable thermal stability up to nearly 300 °C. The highly conjugated cation C30H22N2 2+ is hydrolytically stable, being nitrogen atoms quaternarized, and this accounts for the insensitivity of the perovskite toward water and atmospheric oxygen under ambient conditions. The cation in aqueous solution is highly fluorescent under UV irradiation (emitting yellow-orange light). AEPyBiI as well is intensely luminescent, its photoluminescence emission being more than 1 order of magnitude greater than that of high-quality InP epilayers. The crystal structure of AEPyBiI was determined using synchrotron radiation single-crystal X-ray diffraction. AEPyBiI was extensively characterized using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-vis spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopies, thermogravimetry-differential thermal analysis (TG-DTA), elemental analysis, electrospray ionization mass spectroscopy (ESI-MS), and photoluminescence spectroscopy. AEPyBiI displays a zero-dimensional (0D) perovskite structure in which the inorganic part is constituted by binuclear units consisting of two face-sharing BiI6 octahedra (Bi2I9 3- units). The C30H22N2 2+ cations are stacked along the a-axis direction in a complex motif. Considering its noteworthy light-emitting properties coupled with an easy synthesis and environmental stability, and its composition that does not contain toxic lead or easily oxidable Sn(II), AEPyBiI is a promising candidate for environmentally friendly light-emitting devices

    Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging

    Get PDF
    Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios

    Dual Source Photon-Counting Computed Tomography-Part II: Clinical Overview of Neurovascular Applications

    Get PDF
    Photon-counting detector (PCD) is a novel computed tomography detector technology (photon-counting computed tomography-PCCT) that presents many advantages in the neurovascular field, such as increased spatial resolution, reduced radiation exposure, and optimization of the use of contrast agents and material decomposition. In this overview of the existing literature on PCCT, we describe the physical principles, the advantages and the disadvantages of conventional energy integrating detectors and PCDs, and finally, we discuss the applications of the PCD, focusing specifically on its implementation in the neurovascular field

    Dual-Source Photon-Counting Computed Tomography-Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications

    Get PDF
    The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye
    • 

    corecore