35 research outputs found

    Use of Measurable Residual Disease to Evolve Transplant Policy in Acute Myeloid Leukemia: A 20-Year Monocentric Observation

    Get PDF
    Measurable residual disease (MRD) is increasingly employed as a biomarker of quality of complete remission (CR) in intensively treated acute myeloid leukemia (AML) patients. We evaluated if a MRD-driven transplant policy improved outcome as compared to a policy solely relying on a familiar donor availability. High-risk patients (adverse karyotype, FLT3-ITD) received allogeneic hematopoietic cell transplant (alloHCT) whereas for intermediate and low risk ones (CBF-AML and NPM1-mutated), alloHCT or autologous SCT was delivered depending on the post-consolidation measurable residual disease (MRD) status, as assessed by flow cytometry. For comparison, we analyzed a matched historical cohort of patients in whom alloHCT was delivered based on the sole availability of a matched sibling donor. Ten-years overall and disease-free survival were longer in the MRD-driven cohort as compared to the historical cohort (47.7% vs. 28.7%, p = 0.012 and 42.0% vs. 19.5%, p = 0.0003). The favorable impact of this MRD-driven strategy was evident for the intermediate-risk category, particularly for MRD positive patients. In the low-risk category, the significantly lower CIR of the MRD-driven cohort did not translate into a survival advantage. In conclusion, a MRD-driven transplant allocation may play a better role than the one based on the simple donor availability. This approach determines a superior outcome of intermediate-risk patients whereat in low-risk ones a careful evaluation is needed for transplant allocation

    IgE antibody repertoire in nasal secretions of children and adults with seasonal allergic rhinitis: A molecular analysis

    Get PDF
    Background: There is growing interest both in testing IgE in nasal secretions (NS) and in molecular diagnosis of seasonal allergic rhinitis (SAR). Yet, the reliability of nasal IgE detection with the newest molecular assays has never been assessed in a large cohort of pollen allergic patients. Objective: To investigate with microarray technology and compare the repertoires of specific IgE (sIgE) antibodies in NS and sera of a large population of children and adults with SAR. Methods: Nasal secretions were collected with an absorbent device (Merocel 2000Âź, Medtronic) and a minimal dilution procedure from 90 children and 71 adults with SAR. Total IgE (tIgE) (ImmunoCAP, Thermo Fisher Scientific (TFS)) and sIgE antibodies against 112 allergen molecules (ISAC-112, TFS) were measured in NS and serum. Results: Nasal sIgE was detectable in 68.3% of the patients. The detected nasal sIgE antibodies recognized airborne (88%), vegetable (10%), and animal food or other (<1%) allergen molecules. The prevalence and average levels of sIgE in NS and serum were highly interrelated at population level. A positive nasal sIgE antibody to a given molecule predicted the detection of the same antibody in the patient's serum with a specificity of 99.7% and a sensitivity of 40%. Conclusions: The concentration of sIgE is much lower in nasal secretions than in the serum. sIgE assays with very high analytical sensitivity and sampling methods with minimal dilution will be therefore needed to validate nasal secretions as alternative to serum in testing the sIgE repertoire

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd &lt; 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    WHOQOL Pain and Discomfort module: Development and validity testing of the Italian version

    No full text
    Background: The World Health Organization Quality of Life scale Pain and Discomfort Module (WHOQOL PDM) was designed to assess quality of life (QoL) in adults with chronic pain. It comprises 16 items covering four facets of pain: relief, anger/frustration, vulnerability/fear/worry, and uncertainty. Aim: The purpose of this study was to validate the Italian version of the WHOQOL PDM. Methods: Chronic pain was assessed in 400 patients using the WHOQOL PDM and other pain scales, together with scales measuring associated symptoms, depression, anxiety, and QoL. Results: The WHOQOL PDM shows good internal consistency, concurrent validity (it was significantly associated with all the WHOQOL BREF domains), construct validity (it was significantly associated with other pain scales), and discriminant validity (there were significant differences among different groups of patients). Conclusions: The Italian version of the WHOQOL PDM is a brief, useful, and valid tool for assessing chronic pain and its impact on patients’ QoL. </jats:sec

    Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis

    No full text
    Acute promyelocytic leukemia (APL) accounts for 10-15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor alpha (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL

    Wege zur IT-Konzeption der Verwaltung

    No full text
    <p>In (<b>a</b>), the dashed line represents the total volume in the VOI-2 (2 mm<sup>3</sup>) which is the limit for 100% repair, whereas in (<b>b</b>) it is the minimum value of BS/BV for that VOI-2 (6.6 mm<sup>–1</sup>) that is only obtained when the VOI-2 is fully occupied by compact bone.</p

    Computational lipidology

    No full text
    Wichtige Marker in der klinischen Routine fĂŒr die RisikoabschĂ€tzung von kardiovaskulĂ€ren Erkrankungen (CVD) sind Blutcholesterinwerte auf Basis von Lipoproteinklassen wie ''schlechtes'' LDL oder ''gutes'' HDL. Dies vernachlĂ€ssigt, dass jede Lipoproteinklasse eine nicht-homogene Population von Lipoproteinpartikeln unterschiedlicher Zusammensetzung aus Lipiden und Proteinen bildet. Studien zeigen zudem, dass solche Sub-populationen von Lipoproteinen im Stoffwechsel als auch im Beitrag zu CVD unterschiedlich sind. Mehrwert und routinemĂ€ĂŸiger Einsatz einer detaillierteren Auftrennung von Lipoproteinen sind jedoch umstritten, da die experimentelle Fraktionierung und Analyse aufwendig, zeit- und kostenintensiv sind. Die vorliegende Arbeit ''Computational Lipidology'' prĂ€sentiert einen neuartigen Modellierungsansatz fĂŒr die Berechnung von Lipoproteinverteilungen (Lipoproteinprofil) im Blutplasma, wobei erstmals individuelle Lipoproteinpartikel anstelle von Lipoproteinklassen betrachtet werden. Das Modell berĂŒcksichtigt elementare Bestandteile (Lipide, Proteine) und Prozesse des Stoffwechsel von Lipoproteinen. Stochastische wie deterministische Simulationen errechnen auf Basis aller Lipoproteinpartikel im System deren Dichteverteilung. Die Modellberechnungen reproduzieren erfolgreich klinisch gemessene Lipoproteinprofile von gesunden Patienten und zeigen Hauptmerkmale von pathologischen Situationen, die durch Störung eines der zugrundeliegenden molekularen Prozesse verursacht werden. Hochaufgelöste Lipoproteinprofile zeigen die Verteilung von sogenannten ''high-resolution density sub-fractions'' (hrDS) innerhalb von Hauptlipoproteinklassen. Die Ergebnisse stimmen mit klinischen Beobachtungen sehr gut ĂŒberein, was die Arbeit als einen signifikanten Schritt in Richtung Analyse von individuellen Unterschieden, patienten-orientierte Diagnose von Fettstoffwechselstörungen und Identifikation neuer Sub-populationen von potentiell klinischer Relevanz qualifiziert.Monitoring the major lipoprotein classes, particularly low-density lipoproteins (''bad'' LDL) and high-density lipoproteins (''good'' HDL) for characterizing risk of cardiovascular disease (CVD) is well-accepted and routine in clinical practice. However, it is only one-half of the truth as lipoprotein classes comprise non-homogeneous populations of lipoprotein particles varying significantly in their composition of lipids and apolipoproteins. Various studies have shown differing metabolic behavior and contribution to CVD of individual lipoprotein sub-populations. Nevertheless, the superiority of more detailed lipoprotein fractionation is still a matter of debate because experimental separation and analysis is an elaborate, time-consuming and expensive venture and not yet worthwhile for routine measurements. The present work ''Computational Lipidology'' aims at establishing a novel modeling approach to calculate the distribution of lipoproteins (lipoprotein profile) in blood plasma being the first that settles on individual lipoprotein complexes instead of common lipoprotein classes. Essential lipoprotein constituents and processes involved in the lipoprotein metabolism are taken into account. Stochastic as well as deterministic simulations yield the distribution of lipoproteins over density based on the set of individual lipoprotein complexes in the system. The model calculations successfully reproduce lipoprotein profiles measured in healthy subjects and show main characteristics of pathological situations elicited by disorder in one of the underlying molecular processes. Moreover, the model reveals the distribution of high-resolution lipoprotein sub-fractions (hrDS) within major density classes. The results show satisfactory agreement with clinical observations which qualifies the work as a significant step towards analyzing inter-individual variability, patient-oriented diagnosis of lipid disorders and identifying new sub-fractions of potential clinical relevance
    corecore