410 research outputs found

    Publicly Verifiable Non-Interactive Arguments for Delegating Computation

    Get PDF
    We construct publicly verifiable non-interactive arguments that can be used to delegate polynomial time computations. These computationally sound proof systems are completely non-interactive in the common reference string model. The verifier\u27s running time is nearly-linear in the input length, and poly-logarithmic in the complexity of the delegated computation. Our protocol is based on graded encoding schemes, introduced by Garg, Gentry and Halevi (Eurocrypt 2012). Security is proved under a falsifiable and arguably simple cryptographic assumption about graded encodings. All prior publicly verifiable non-interactive argument systems were based on non-falsifiable knowledge assumptions. Our new result builds on the beautiful recent work of Kalai, Raz and Rothblum (STOC 2014), who constructed privately verifiable 2-message arguments. While building on their techniques, our protocols avoid no-signaling PCPs, and we obtain a simplified and modular analysis. As a second contribution, we also construct a publicly verifiable non-interactive argument for (logspace-uniform) computations of bounded depth. The verifier\u27s complexity grows with the depth of the circuit. This second protocol is adaptively sound, and its security is based on a falsifiable assumption about the hardness of a search problem on graded encodings (a milder cryptographic assumption). This result builds on the interactive proof of Goldwasser, Kalai and Rothblum (STOC 2008), using graded encodings to construct a non-interactive version of their protocol

    The impact on neonatal mortality of shifting childbirth services among levels of hospitals: Taiwan's experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is considerable discussion surrounding whether advanced hospitals provide better childbirth care than local community hospitals. This study examines the effect of shifting childbirth services from advanced hospitals (i.e., medical centers and regional hospitals) to local community hospitals (i.e., clinics and district hospitals). The sample population was tracked over a seven-year period, which includes the four months of the 2003 severe acute respiratory syndrome (SARS) epidemic in Taiwan. During the SARS epidemic, pregnant women avoided using maternity services in advanced hospitals. Concerns have been raised about maintaining the quality of maternity care with increased demands on childbirth services in local community hospitals. In this study, we analyzed the impact of shifting maternity services among hospitals of different levels on neonatal mortality and maternal deaths.</p> <p>Methods</p> <p>A population-based study was conducted using data from Taiwan's National Health Insurance annual statistics of monthly county neonatal morality rates. Based on a pre-SARS sample from January 1998 to December 2002, we estimated a linear regression model which included "trend," a continuous variable representing the effect of yearly changes, and two binary variables, "month" and "county," controlling for seasonal and county-specific effects. With the estimated coefficients, we obtained predicted neonatal mortality rates for each county-month. We compared the differences between observed mortality rates of the SARS period and predicted rates to examine whether the shifting in maternity services during the SARS epidemic significantly affected neonatal mortality rates.</p> <p>Results</p> <p>With an analysis of a total of 1,848 observations between 1998 and 2004, an insignificantly negative mean of standardized predicted errors during the SARS period was found. The result of a sub-sample containing areas with advanced hospitals showed a significant negative mean of standardized predicted errors during the SARS period. These findings indicate that despite increased use of local community hospitals, neonatal mortality during the SARS epidemic did not increase, and even decreased in areas with advanced hospitals.</p> <p>Conclusion</p> <p>An increased use of maternity services in local community hospitals occurred during the SARS epidemic in Taiwan. However, we observed no increase in neonatal and maternity mortality associated with these increased demands on local community hospitals.</p

    Incrementally Verifiable Computation via Incremental PCPs

    Get PDF
    If I commission a long computation, how can I check that the result is correct without re-doing the computation myself? This is the question that efficient verifiable computation deals with. In this work, we address the issue of verifying the computation as it unfolds. That is, at any intermediate point in the computation, I would like to see a proof that the current state is correct. Ideally, these proofs should be short, non-interactive, and easy to verify. In addition, the proof at each step should be generated efficiently by updating the previous proof, without recomputing the entire proof from scratch. This notion, known as incrementally verifiable computation, was introduced by Valiant [TCC 08] about a decade ago. Existing solutions follow the approach of recursive proof composition and can be based on strong and non-falsifiable cryptographic assumptions (so-called ``knowledge assumptions\u27\u27). In this work, we present a new framework for constructing incrementally verifiable computation schemes in both the publicly verifiable and designated-verifier settings. Our designated-verifier scheme is based on somewhat homomorphic encryption (which can be based on Learning with Errors) and our publicly verifiable scheme is based on the notion of zero-testable homomorphic encryption, which can be constructed from ideal multi-linear maps [Paneth and Rothblum, TCC 17]. Our framework is anchored around the new notion of a probabilistically checkable proof (PCP) with incremental local updates. An incrementally updatable PCP proves the correctness of an ongoing computation, where after each computation step, the value of every symbol can be updated locally without reading any other symbol. This update results in a new PCP for the correctness of the next step in the computation. Our primary technical contribution is constructing such an incrementally updatable PCP. We show how to combine updatable PCPs with recently suggested (ordinary) verifiable computation to obtain our results

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Elevated Endogenous Erythropoietin Concentrations Are Associated with Increased Risk of Brain Damage in Extremely Preterm Neonates

    Get PDF
    Background We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO) concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI). Methods Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO) was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age. Results Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55) Mental (OR 2.3; 95% CI 1.5-3.5) and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7) Development Indices (MDI, PDI), and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8). Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3), but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI. Conclusion hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly

    Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox

    Get PDF
    This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results

    Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns

    Get PDF
    ObjectivesTo evaluate, in extremely low gestational age newborns (ELGANs), relationships between indicators of early postnatal hypotension and cranial ultrasound indicators of cerebral white matter damage imaged in the nursery and cerebral palsy diagnoses at 24 month follow-up.MethodsThe 1041 infants in this prospective study were born at < 28 weeks gestation, were assessed for 3 indicators of hypotension in the first 24 postnatal hours, had at least one set of protocol cranial ultrasound scans, and were evaluated with a structured neurologic exam at 24 months corrected age. Indicators of hypotension included: 1) lowest mean arterial pressure (MAP) in the lowest quartile for gestational age; 2) treatment with a vasopressor; and 3) blood pressure lability, defined as the upper quartile of the difference between each infant’s lowest and highest MAP. Outcomes included indicators of cerebral white matter damage, i.e. moderate/severe ventriculomegaly or an echolucent lesion on cranial ultrasound, and cerebral palsy diagnoses at 24 months gestation. Logistic regression was used to evaluate relationships among hypotension indicators and outcomes, adjusting for potential confounders.ResultsTwenty-one percent of surviving infants had a lowest blood pressure in the lowest quartile for gestational age, 24% were treated with vasopressors, and 24% had labile blood pressure. Among infants with these hypotension indicators, 10% percent developed ventriculomegaly and 7% developed an echolucent lesion. At 24-months follow-up, 6% had developed quadriparesis, 4% diparesis, and 2% hemiparesis. After adjusting for confounders, we found no association between indicators of hypotension, and indicators of cerebral white matter damage or a cerebral palsy diagnosis.ConclusionsThe absence of an association between indicators of hypotension and cerebral white matter damage and or cerebral palsy suggests that early hypotension may not be important in the pathogenesis of brain injury in ELGANs

    Cranial Ultrasound Lesions in the NICU Predict Cerebral Palsy at Age 2 Years in Children Born at Extremely Low Gestational Age

    Get PDF
    Our prospective cohort study of extremely low gestational age newborns evaluated the association of neonatal head ultrasound abnormalities with cerebral palsy at age 2 years. Cranial ultrasounds in 1053 infants were read with respect to intraventricular hemorrhage, ventriculomegaly, and echolucency, by multiple sonologists. Standardized neurological examinations classified cerebral palsy, and functional impairment was assessed. Forty-four percent with ventriculomegaly and 52% with echolucency developed cerebral palsy. Compared with no ultrasound abnormalities, children with echolucency were 24 times more likely to have quadriparesis and 29 times more likely to have hemiparesis. Children with ventriculomegaly were 17 times more likely to have quadriparesis or hemiparesis. Forty-three percent of children with cerebral palsy had normal head ultrasound. Focal white matter damage (echolucency) and diffuse damage (late ventriculomegaly) are associated with a high probability of cerebral palsy, especially quadriparesis. Nearly half the cerebral palsy identified at 2 years is not preceded by a neonatal brain ultrasound abnormality. Originally published Journal of Child Neurology, Vol. 24, No. 1, Jan 200
    corecore