
Incrementally Verifiable Computation via Incremental PCPs

Moni Naor ∗ Omer Paneth† Guy N. Rothblum ‡

December 4, 2019

Abstract

If I commission a long computation, how can I check that the result is correct without re-doing
the computation myself? This is the question that efficient verifiable computation deals with. In this
work, we address the issue of verifying the computation as it unfolds. That is, at any intermediate
point in the computation, I would like to see a proof that the current state is correct. Ideally, these
proofs should be short, non-interactive, and easy to verify. In addition, the proof at each step should
be generated efficiently by updating the previous proof, without recomputing the entire proof from
scratch. This notion, known as incrementally verifiable computation, was introduced by Valiant
[TCC 08] about a decade ago. Existing solutions follow the approach of recursive proof composition
and can be based on strong and non-falsifiable cryptographic assumptions (so-called “knowledge
assumptions”).

In this work, we present a new framework for constructing incrementally verifiable computation
schemes in both the publicly verifiable and designated-verifier settings. Our designated-verifier
scheme is based on somewhat homomorphic encryption (which can be based on Learning with
Errors) and our publicly verifiable scheme is based on the notion of zero-testable homomorphic
encryption, which can be constructed from ideal multi-linear maps [Paneth and Rothblum, TCC 17].

Our framework is anchored around the new notion of a probabilistically checkable proof (PCP)
with incremental local updates. An incrementally updatable PCP proves the correctness of an on-
going computation, where after each computation step, the value of every symbol can be updated
locally without reading any other symbol. This update results in a new PCP for the correctness of the
next step in the computation. Our primary technical contribution is constructing such an incremen-
tally updatable PCP. We show how to combine updatable PCPs with recently suggested (ordinary)
verifiable computation to obtain our results.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Isael. Email:
moni.naor@weizmann.ac.il. Supported in part by grant from the Israel Science Foundation (no. 950/16). Incumbent of the
Judith Kleeman Professorial Chair.
†MIT and Northeastern University. Supported by NSF Grants CNS-1413964, CNS-1350619 and CNS-1414119, and the

Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-
0226 and W911NF-15-C-0236.
‡Weizmann Institute of Science. Email: rothblum@alum.mit.edu. This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
819702).

Contents

1 Introduction 1
1.1 This Work . 2

2 Technical Overview 5
2.1 The BFLS Construction . 5
2.2 The Incremental PCP Construction . 6
2.3 Updating the PCP. 8
2.4 From PCP to Verifiable Computation. 11

3 Definitions 11
3.1 Incrementally Updatable PCP . 12
3.2 Incrementally Verifiable Computation . 12

4 PCP Construction 13
4.1 Preliminaries . 14
4.2 The Constraints . 15
4.3 The Proof String . 17

5 Useful Claims About X̃ 19

6 The Update Procedure 20
6.1 Updating X̃ . 22
6.2 Updating A . 22
6.3 Updating Ā . 23
6.4 Updating B . 24
6.5 Updating B̄ . 26
6.6 Updating C . 27
6.7 Updating C̄ . 29
6.8 Updating Q . 30

6.8.1 Case 1: j = 0. 30
6.8.2 Case 2: j ∈ [m]. 30
6.8.3 Case 3: j ∈ [m+ 1, 2m]. 32
6.8.4 Case 4: j ∈ [2m+ 1, 3m]. 33
6.8.5 Case 5: j ∈ [3m+ 1, 3(m+ k)]. 35

1 Introduction

Efficient verification of complex computations is a foundational question in the theory of computa-
tion. Recent years have seen exciting progress in the study of this problem, from a rich theory of
efficient protocols to concrete implementations and new application domains. In the verifiable compu-
tation paradigm, the output of a computation is accompanied by a proof of the result’s correctness. The
proof should be efficient to construct (not much more expensive than simply computing the output), and
super-efficient to verify (e.g. verification in nearly-linear time).

Incrementally verifiable computation. In this work we revisit the question of incrementally verifiable
computation, introduced by Valiant [Val08] about a decade ago. To motivate this question, consider the
following scenarios:

Intermediate outputs: Consider a server that executes a long computation for a client. Even before the
entire computation terminates, the client may want to obtain intermediate outputs or to audit the server’s
progress throughout the computation. This is especially significant in the presence of transient faults
that are hard to detect: suppose that the computation is so long that faults are likely to occur eventually.
Without a methodology for detecting these faults, then the final output is likely to be wrong.

Transferable computation: We would like to split a long sequential computation between different par-
ties such that every party performs a small part of the computation and passes it on to the next party.
Together with the current state of their computation, parties should include a proof that the computation
was performed correctly, not only in the last step, but in its entirety. As a compelling example, consider
an extremely long computation that would require all of humanity many generations to complete. We
would like every generation to perform its part, and pass the state of the computation along to the next
generation together with a proof of correctness.

In both examples above we need a correctness proof that can be constructed incrementally, so that
at any intermediate point in the computation, the current state can be verified. The process of updating
the proof must be fast and stateless, meaning that, first, the time to update the proof is independent of
the running time of the computation so far and, second, to update the proof we only need to know the
most recent version of the proof and the current state of the computation.

We restrict our attention to non-interactive protocols for deterministic computations, where both the
prover and verifier have access to an honestly generated common reference string, and where soundness
is only required to hold against computationally bounded adversarial provers. Even without the issue
of incremental updates, both of these relaxations are known to be necessary under standard complexity
theoretic assumptions (see Goldreich and Håstad [GH98]).

In a verifiable computation protocol an honest prover executes a program M on input y. For every
timestep t, let ct denote the state of the program (including the program’s entire memory) after the first t
steps. Given the common reference string (CRS) the prover constructs a proof Πt for the correctness of
the state ct. For security parameter κ, the verifier takes the CRS, the input y, the state ct and the proof
Πt and decides if to accept the proof in time (|y|+ |ct|) ·poly(κ), independently of t. Soundness asserts
that, given an honestly generated CRS, no efficient adversarial prover can find an input y, a time t and
an accepting proof for any state other then ct (except with negligible probability).

A verifiable computation protocol is incrementally updatable if there is an update procedure that,
given the CRS, the state ct and the proof Πt, computes the proof Πt+1 for the next state in time (|y| +
|ct|) · poly(κ).

The state of the art. Valiant presented an approach for constructing incrementally verifiable compu-
tation based on the idea of recursive proof composition. Very roughly, given a proof Πt for state ct the
updated proof Πt+1 for the next state ct+1 asserts that: (1) there exists a state ct and a proof Πt for

1

timestep t that are accepted by the verifier, and (2) the computation starting from state ct transitions to
state ct+1. Constructing the proof Πt+1 given ct and Πt may potentially be fast since Πt+1 only argues
about the fast verification algorithm and one step of the computation.

The challenge in implementing this idea is maintaining soundness. Existing solutions are based on
the strong notion of succinct non-interactive arguments of knowledge for non-deterministic computa-
tions also known as SNARKs [Val08, BCC+17, BCCT13]. Currently such SNARKs are known based
on non-standard non-falsifiable assumptions (so-called “knowledge assumptions”). We therefore ask:

Is incrementally verifiable computation possible under standard assumptions?

1.1 This Work

In this work we give a new framework for constructing incrementally verifiable computation. Based on
this framework we give new protocols in both the publicly verifiable and designated-verifier settings.

Designated verifier. In the designated-verifier setting the common reference string (CRS) is generated
together with a secret key. Only a verifier that holds this secret key can check the proof, and soundness
is not guaranteed against parties who know the secret key. In this setting we prove the following:

Theorem 1.1 (informal). Assuming a somewhat-homomorphic encryption scheme for computations of
poly-logarithmic degree, there exists a designated-verifier incrementally verifiable computation proto-
col.

The protocol is based on the (non-incremental) verifiable computation protocol of Kalai et al. [KRR14]
with the improvements of Brakerski et al. [BHK17]. Their construction can use any computational pri-
vate information retrieval (PIR) scheme. To get incremental updates, we rely on the stronger notion
of somewhat-homomorphic encryption. Such encryption schemes are known under the Learning with
Errors assumption (see Brakerski and Vaikuntanathan and Gentry et al. [BV11, GSW13]).

Public verification. In a publicly verifiable protocol, the proof can be verified by anyone who knows
the CRS, and there is no secret key. In this setting we prove the following:

Theorem 1.2 (informal). Assuming a 3-key zero-testable somewhat homomorphic encryption scheme
with correctness for adversarially-generated ciphertexts, there exists a publicly verifiable incrementally
verifiable computation protocol.

The protocol is based on the (non-incremental) verifiable computation protocol of Paneth and Roth-
blum [PR17] and is proven secure under the same assumption as their work. We refer the reader
to [PR17] for the definition of the required notion of zero-testable homomorphic encryption. We note,
however, that currently, candidates for such homomorphic encryption are only known based on (effi-
ciently falsifiable) assumptions about ideal multilinear maps.

Our framework deviates from the recursive proof composition approach. Instead, our constructions
are based on a new type of probabilistically checkable proof (PCP) with incremental local updates.

Incrementally updatable PCP. In contrast to the setting of verifiable computation, known construc-
tions in the PCP model have proofs that are longer than the computation whose correctness is being
proved. Verification, on the other hand, is performed by querying only a small number of locations
in the proof, and in running time that is nearly-linear in the input length. Moreover, in the PCP model
positive results are known even for non-deterministic computations with unconditional soundness. PCPs
allow us to prove that for a non-deterministic program M and input y there exists a witness w that will
make M reach state ct after t steps. The proof Πt is a string of size poly(t) over some alphabet Σ of

2

size polylog(t) (our setting requires a non-binary alphabet) and verification queries polylog(t) symbols
of the proof achieving negligible soundness error.

In this setting, the question of incremental updates is as follows: given the proof Πt for state ct, and
given a state ct+1 that follows ct (for non-deterministic computations, there may be more than one state
that follows ct), we would like to update Πt and obtain a new proof Πt+1 for ct+1. We cannot hope for
the update time to be independent of t since, given the error-correcting nature of the proof, every proof
symbol must change. Instead we require that every symbol of the proof can “self-update” quickly. That
is, given the i-th symbol of Πt and the states ct and ct+1 we can compute the i-th symbol of the new
proof Πt+1 in time (|y|+ |ct|) · polylog(t).

The main technical contribution of this work is a construction of an incrementally updatable PCP.
Our construction is based on the classic PCP of Babai, Fortnow, Levin and Szegedy (BFLS) [BFLS91].
We modify their PCP by considering a larger alphabet Σ and augmenting every symbol of the original
proof with supplemental values that allow the augmented symbol to self-update.

From PCP to verifiable computation, heuristically. Biehl, Meyer and Wetzel [BMW98] suggested
a heuristic transformation from PCPs to verifiable computation protocols. We refer to their technique
as the hidden query heuristic. Roughly speaking, the idea is to perform the required PCP queries in a
manner that does not allow the prover to figure out the query locations. This idea can be implemented
by placing random PCP queries in the CRS, encoded using a private information retrieval (PIR) scheme,
or, alternatively, encrypted with a homomorphic encryption scheme (where every query is encrypted
under a different key). The prover homomorphically evaluates the PCP answers and sends the encrypted
results as the proof. The (designated) verifier decrypts the results and checks that the underlying PCP
accepts.

We observe that instantiating the hidden query heuristic with a PCP that can be incrementally up-
dated gives a heuristic incrementally verifiable computation protocol. To see this, recall that following
the hidden query heuristic, the proof consists of a few PCP symbols encrypted under homomorphic en-
cryption. Since every one of these symbols can self-update, we can homomorphically evaluate the PCP
update procedure under the encryption and obtain encryptions of the updated PCP symbols. We note
that, while the hidden query heuristic can be implemented with PIR, getting incrementally verifiable
computation requires the stronger notion of homomorphic encryption which supports “multi-hop” eval-
uation. This is because we update the proof by homomorphically evaluating the PCP update procedure
over the encrypted PCP answers.

Secure instantiations. For many years it was not known whether the hidden query technique can be
shown to be sound (see Dwork et al. [DLN+00] for the obstacles in proving its soundness, as well
as [DNR16] and [DHRW16]). However, recent works give secure instantiations of this heuristic in both
the designated-verifier and the publicly verifiable settings. Next, we discuss these instantiations and ex-
plain how we turn them into incrementally verifiable computation protocols based on our incrementally
updatable PCP.

Starting from the designated-verifiable setting, the works of [KRR13, KRR14, BHK17] prove that
the hidden query heuristic is secure, assuming the underlying PCP satisfies a strong form of soundness
called no-signaling soundness. Our designated-verifier protocol is based on the no-signaling PCP con-
struction of Brakerski, Holmgren and Kalai (BHK) [BHK17], which in turn is based on the PCP of BFLS
with several changes that facilitate the proof of no-signaling soundness. Very roughly, their construction
has the following structure:

1. Given a program M , define an augmented program M̃ that emulates M while encoding each of
its states ct with a particular error correcting code.

3

2. The honest prover computes the PCP proof for the augmented program M̃ . This proof is essen-
tially the same as in the PCP of BFLS.

3. The verifier locally tests the PCP proof. These tests differ significantly from the tests performed
by the original BFLS verifier.

To turn this PCP into a verifiable computation protocol, BHK apply the hidden query technique using
any PIR scheme.

To achieve incremental updates, we make the following two changes to the BHK protocol: first,
we modify the prover to compute the PCP proof for M̃ using our incrementally updatable PCP instead
of the PCP of BFLS. Recall that our PCP augments every symbol of the original BFLS proof with
supplemental values. Since these supplemental values are only needed to update the proof, the verifier
can simply ignore them. Other than that, our verifier is the same as that of BHK. Second, as discussed
above, to turn the PCP into an incrementally verifiable computation protocol we use homomorphic
encryption instead of PIR. We note that in our PCP the answers can be computed by a polynomial of
poly-logarithmic degree and, therefore, somewhat homomorphic encryption is sufficient [Gen09].

We emphasize that while our honest prover is defined differently, the verification procedure of our
incrementally verifiable computation is essentially the same as the one in BHK. Therefore, the soundness
of our protocol follows directly from the analysis in BHK. Indeed, the focus of this work is on showing
that the honest proof can be constructed incrementally. We note that there some minor differences
between the BFLS construction that we use and the one used in BHK. However, a careful inspection
shows that the analysis in BHK can be easily modified to fit our PCP (see Section 2.4 for more detail).

In the publicly verifiable setting, the work of [PR17] gives a verifiable computation protocol based
on the hidden query heuristic. While they do not require that the PCP satisfies no-signaling soundness,
they need a stronger notion of homomorphic encryption that supports a weak zero-test operation as
well as some additional properties. They show that such encryption can be based on ideal multi-linear
maps. Similarly to the BHK protocol, in [PR17], the honest prover simply constructs the PCP proof for
an augmented program M̃ using the PCP of BFLS. We modify their protocol to use our incrementally
updatable PCP instead and use the same verification procedure (ignoring any supplemental values added
to the BFLS proof). Therefore, designated-verifiable setting, the soundness of our protocol follows
immediately from the proof analysis of [PR17].

On the locality of updates. A natural relaxation of incrementally updatable PCP would allow for
updating of every proof symbol given the values of a small number of other symbols. PCPs with such
local updates may be easier to construct than PCPs with strictly self-updating symbols. Note, however,
that in order to go from incrementally updatable PCPs to incrementally verifiable computation following
our framework, it is crucial that PCP symbols can self-update. If computing one symbol of the new
proof requires the values of even two old symbols, then the number of symbols we need to maintain
under every encryption may grow exponentially with the number of updates.

On strong soundness. The focus of this work is on constructing PCPs and verifiable computation pro-
tocols where the honest proof can be computed incrementally. An intriguing question for future research
is to design PCPs and verifiable computation protocols where even an adversarially generated proof can
be updated. That is, if an adversary produces an accepting proof for timestep t, we can continue updating
this proof to get accepting proof for subsequent steps. This strong soundness guarantee is motivated, for
example, by the transferable computation scenario described above where multiple mutually distrustful
parties incrementally construct the correctness proof.

Our PCP construction does not satisfy this stronger guarantee. Very roughly, the reason is that we
augment the standard PCP of BFLS by adding supplemental values encoded into every symbol. These
supplemental values are crucial for implementing self-updates, but play no role in the verification of

4

the PCP. In particular, an adversarially generated proof may consist of a good “core PCP” that verifies
correctly, together with corrupted supplemental values that would prevent this PCP from updating.

Related work. In a recent work, Holmgren and Rothblum [HR18] construct designated-verifier argu-
ment systems where the prover’s space and time complexity are very close to the time and space needed
to perform the computation. While their work does not consider or achieve the notion of incrementally
updatable PCPs, there are technical similarities in the way the two PCP systems are constructed. Indeed,
they consider a related notion where the prover is given streaming access to the computation’s tableau.
In this related model, they can process additions to the tableau in small amortized time. On a technical
level, we note that they do not limit the space used by the machine, which leads to significant compli-
cations. Further connections between incrementally verifiable computation and argument systems with
very efficient provers were explored in [Val08, BCCT13].

In a very recent work (subsequent to ours), Kalai, Paneth and Yang [KPY19] construct a verifi-
able computation protocol with public verification based on a falsifiable assumption on bilinear groups.
While their protocol also relies on the hidden query technique, we do not know how to make it incre-
mental based on our PCP. This is because their protocol also uses a bootstrapping technique (to go from
a long CRS to a short CRS) that significantly complicates the prover’s strategy.

Future directions. We leave open the question of constructing incrementally verifiable computation
protocols with strong soundness, where even adversarially generated proofs can be updated as discussed
above. Another interesting direction is to explore alternative approaches to incrementally verifiable com-
putation based on standard assumptions. One potential path towards this goal is to implement Valiant’s
idea of recursive proof composition, replacing knowledge assumptions with the recent bootstrapping
technique of [KPY19]. We emphasize that the approach proposed in this work is not based on recursive
proof composition. In particular, our solution can also be applied in the designated-verifier setting, based
on the Learning with Errors assumption.

2 Technical Overview

Next we describe our construction of an incrementally updatable PCP. We start by recalling the PCP of
BFLS. In Section 2.2 we describe our PCP proof string and in Section 2.3 we explain how to update it.

2.1 The BFLS Construction

Our construction builds on the PCP of BFLS [BFLS91]. We recall some of the details of that construc-
tion.

Setup. For a non-deterministic polynomial-time Turing machine M and input y ∈ {0, 1}n we con-
struct a proof for the fact that there exists a witness that makes M accepts y. As we know from the
Cook-Levin Theorem, it is possible to represent M ’s computation on an input y by a Boolean 3CNF
formula φy over N = poly(n) variables such that φy is satisfiable if and only if there exists a witness
that makes M accept y. Let F be a field of size Θ(log2N) and let H ⊂ F be a subset of size log(N).
We set u ∈ N such that |H|u = N and index the variables of φy by vectors in Hu. Given a witness that
makes M accept y we can compute an assignment X : Hu → {0, 1} that satisfies φy.

Arithmetization. The first part of the PCP proof contains the assignment X represented as a multi-
variate polynomial X̃ : Fu → F of degree at most (|H|−1) in each variable, that identifies withX on Hu.
We also describe the formula φy algebraically as polynomial ϕy : F` → F over ` = 3(u+ 1) variables,

5

with individual degree polylog(N). For every 3 variables h1,h2,h3 ∈ Hu and 3 bits b1, b2, b3 ∈ {0, 1},
if the formula φy contains the clause:

(X(h1) = b1) ∨ (X(h2) = b2) ∨ (X(h3) = b3) ,

then the polynomial ϕy evaluates to 1 on (h1,h2,h3, b1, b2, b3). Otherwise, ϕy evaluates to 0. The
polynomial ϕy can be computed by an arithmetic circuit of size polylog(N) +O(|y|).

The consistency check polynomial. The proof contains a consistency check polynomialQ0 : F` → F.
For every 3 variables h1,h2,h3 ∈ Hu and 3 bits b1, b2, b3 ∈ {0, 1} the polynomial Q0 evaluates to
a non-zero value on (h1,h2,h3, b1, b2, b3) if only if the formula φy contains the clause defined by
(h1,h2,h3, b1, b2, b3) and this clause is not satisfied by the assigned values X(h1), X(h3), X(h3). It
follows that Q0 vanishes on H` if and only if the assignment X satisfies φy (which implies that there
exists a witness that makes M accept y). The polynomial Q0 is defined as follows:

Q0 (h1,h2,h3, b1, b2, b3) = ϕy (h1,h2,h3, b1, b2, b3) ·
∏
i∈[3]

(
X̃ (hi)− bi

)
.

The sum-check polynomials. To allow the verifier to check that Q0 vanishes on H` (and, therefore,
M accepts y), the proof contains “sum-check polynomials” Q1, . . . , Q` : F` → F. The j-th polynomial
in this sequence is a low-degree extension of Q0 in its first j variables. In particular, for 0 < j ≤ `, the
polynomial Qj is defined as:

Qj (y1, . . . , y`) =
∑

h1,...,hj∈H
IDj ((h1, . . . , hj), (y1, . . . , yj)) ·Q0 (h1, . . . , hj , yj+1, . . . , y`) .

Where IDj : F2j → F is the (unique) polynomial with individual degree (H − 1) such that for every
h,h′ ∈ Hj , IDj(h,h′) = 1 if h = h′ and IDj(h,h

′) = 0 otherwise.

The proof string. The PCP proof string contains, for every u ∈ Fu the value X̃(u) and for every
v ∈ F` the values Q0(v), . . . , Q`(v).

On verifying the PCP. For the sake of this technical overview, for the most part we ignore the tests
run by the verifier (which include various low-degree tests and consistency checks). This is because our
focus is on the structure of the proof itself and the procedure that updates it.

2.2 The Incremental PCP Construction

We start by describing the content of the proof at any intermediate timestep and then explain how to
update. Our construction relies on the leveled structure of the formula φy representing the computation.
Specifically, if the computation M(y) requires time T and space S, we can view the variables of φy as
organized in a table with T′ = T · β rows and S′ = S · β columns for some constant β. Any assignment
X : [T′]× [S′]→ {0, 1} that satisfies φy corresponds to an execution ofM on input y with some witness
as follows: for every timestep t ∈ [T] the assignment to the (t·β)-th row corresponds to the configuration
ct of M after t steps, and rows (t · β) + 1 through ((t + 1) · β) − 1 contain auxiliary variables used
to verify the consistency of the configurations ct and ct+1.1 A crucial fact that we will use is that φy is
leveled. That is, every clause in φy only involves variables from two consecutive rows.

1These auxiliary rows can be avoided if φy is a k-CNF formula for some constant k > 3. However, for our purpose, it is
important that φy is a 3CNF formula.

6

Partial assignments. We setm, k ∈ N such that |H|m = T′ and |H|k = S′ and we index every variable
by a pair in Hm×Hk. As before, given a witness that makesM accept y we can compute an assignment
X : Hm+k → {0, 1} that satisfies φy. For τ ∈ [T′] we define the assignment Xτ : Hm+k → {0, 1} that
agrees with X on the first τ rows and assigns 0 to all variables in rows larger than τ . As before, we
consider a polynomial X̃τ : Fm+k → F of individual degree at most (|H|−1), that identifies withXτ on
Hm+k. As discussed above, every step of M ’s computation determines an assignment for β consecutive
rows. After completing only the first t steps of the computation and reaching configuration ct, we can
already compute the assignment Xτ for τ = t · β. Moreover, the assignment to the variables in row τ is
only a function of the configuration ct.

The new formula. Now, to prove that M ’s computation on input y can indeed reach a configuration
ct after t steps, it is sufficient to prove that both:

1. The assignment Xτ satisfies all of φy’s clauses involving variables of the first τ = t · β rows.

2. The assignment to row τ matches the assignment defined by the configuration ct.

For a fixed configuration ct, we therefore define another 3CNF formula φτ that is satisfied if and only
if the assignment of row τ matches ct.2 As before, we consider a polynomial ϕτ : F` → F describing
the clauses of the formula φτ . We let ϕy,τ denote the polynomial ϕy + ϕτ describing the clauses of the
combined formula φy,τ = φy ∧ φτ .

The consistency check polynomial. Our new consistency check polynomial Q0
τ : F` → F is defined

similarly to Q0 except that it “ignores” clauses on variables beyond row τ . Recall that every clause in
φy only involves variables from two consecutive rows. We assume WLOG that if ϕy,τ contains a clause
on the variables (t1, s1), (t2, s2), (t3, s3) ∈ Hm+k then t2 = t3 is the index of the row immediately
before t1. Therefore, the polynomial Q0

τ is defined as follows:

Q0
τ (t1, t2, t3, s1, s2, s3, b1, b2, b3)

= LEm(t1, τ) · ϕy,τ (t1, t2, t3, s1, s2, s3, b1, b2, b3) ·
∏
i∈[3]

(
X̃τ (ti, si)− bi

)
.

Where LEj : F2j → F is the (unique) polynomial of individual degree (|H| − 1) such that for every
h,h′ ∈ Hj , LEj(h,h′) = 1 if the row indexed by h is smaller than or equal to the one indexed by
h′, and LEj(h,h

′) = 0 otherwise. We purposefully order the input variables to Q0
τ leading with the

row indices. As discussed later in this overview, this simplifies the update procedure of the sum-check
polynomials. The sum-check polynomials Q1

τ , . . . , Q
`
τ are defined by Q0

τ as before.

The proof string. In our new proof we group together O(`) symbols of the original proof into one
symbol (over a larger alphabet). This grouping is crucial for allowing this larger symbol to self-update.
The PCP proof for the computation up to timestep t ∈ [T] is given by Πτ for τ = t · β. The string
Πτ contains one symbol σzτ for every vector z = (t1, t2, t3, s1, s2, s3, b1, b2, b3) ∈ F`. The symbol σzτ
contain the values X̃τ (t1, s1), X̃τ (t2, s2), X̃τ (t3, s3) and the values Q0

τ (z), . . . , Q`τ (z). Further, every
symbol contains additional supplemental values that are needed for self-updating. The supplemental
values are discussed below, when we detail the update procedure.

2While φτ can be described by simple conjunction, in our construction it will convenient to view it as a 3CNF formula.

7

On verifying the PCP. The new PCP can be verified via the same tests performed by the original
BFLS verifier. The grouping of values into symbols and the supplemental values in every symbol are
needed only for updates and are ignored by the verifier. Note that in our new construction every value
X̃τ (u) is contained in multiple symbols. When the BFLS verifier queries the value X̃τ (u), it is crucial
for soundness that the symbol we read in order to answer this query is chosen as a function of u alone,
independently of the other verifier queries.

2.3 Updating the PCP.

We start with the (t − 1)-th configuration ct−1 and one symbol σz(t−1)·β of the proof Π(t−1)·β . Given
the next configuration ct our goal is to compute the symbol σzt·β of the new proof Πt·β . Starting from
τ = (t − 1) · β + 1 we show how to update σzτ−1 to σzτ and we repeat this update β times. Recall that
Xτ is our partial assignment to the first τ rows. We first use the new configuration ct to obtain row τ of
Xτ . We denote this assignment by γτ : Hk → {0, 1}. We proceed to update every value in the symbol
σzτ−1. In what follows we denote z = (t, s,b) for t = (t1, t2, t3) ∈ F3m, s = (s1, s2, s3) ∈ F3k, and
b = (b1, b2, b3) ∈ F3.

Updating X̃ . The symbol σzτ−1 contains the evaluations of the assignment polynomial X̃τ−1 at loca-
tions (ti, si). We show how to update these evaluations and compute X̃τ (ti, si). Recall that X̃τ is a
polynomial of individual degree at most (|H| − 1), that identifies with Xτ on Hm+k. Equivalently, X̃τ

is the unique low-degree extension of Xτ given by the sum:

X̃τ (v) =
∑

h∈Hm+k

IDm+k(h,v) ·Xτ (h) . (1)

Since the assignment Xτ−1 and Xτ only differ on the τ -th row where Xτ−1(τ, ·) is identically zero and
Xτ (τ, ·) = γτ we have that:

Xτ+1(v)−Xτ (v) =
∑

h∈{0,1}k
IDm+k((τ,h),v) · γτ (h) .

Therefore, given the old value Xτ−1(ti, si) and γτ we can efficiently compute the new value Xτ (ti, si)
by summing the O(S′) summands above.

Updating Q. The symbol σzt−1 also contains the evaluations of the consistency check and sum-check
polynomial Qjτ−1(z) for every 0 ≤ j ≤ `. We show how to update these evaluations and compute
Qjτ (z). The update procedure for Qjτ is more involved than the update of X̃τ , since the polynomial
Qjτ is not just linear combination of the values Xτ (·). For different values of j, we give a different
procedures updating Qjτ . In this overview we demonstrate the main technical ideas by focusing on some
of these cases.

Updating Q0. For j = 0 we can efficiently evaluate the consistency check polynomial Q0
τ (z) since

the values Xτ (ti, si) have already been computed, the circuit LE can be efficiently evaluated, and the
circuit ϕy,τ can be efficiently evaluated given the input y and the assignment γτ .

Updating Qm. For j = m we want to compute:

Qmτ (z) =
∑

h1∈Hm
ID (h1, t1) ·Q0

τ (h1, t2, t3, s,b) .

8

In computing this sum, we exploit the fact that the first m inputs to Q0
τ are always in H. First, for

h1 ∈ Hm we have LE(h1, τ) = 1 when h1 ≤ τ and LE(h1, τ) = 0 when h1 > τ . (In contrast for an
arbitrary u ∈ Fm, LE(u, τ) may not be in {0, 1}.) Therefore, by the definition of Q0

τ , we can write the
sum above as:∑

h1≤τ
ID (h1, t1) · ϕy,τ (h1, t2, t3, s,b) ·

(
X̃τ (h1, s1)− b1

)
·
∏
i∈[2,3]

(
X̃τ (ti, si)− bi

)
.

Since we have already computed the values X̃τ (t2, s2) and X̃τ (t3, s3) it is sufficient to compute the
following sum denoted by Amτ (z,b):

Amτ (z) =
∑
h1≤τ

ID (h1, t1) · ϕy,τ (h1, t2, t3, s,b) ·
(
X̃τ (h1, s1)− b1

)
.

Computing the τ summands above from scratch requires time proportional to the running time of the
computation so far. Therefore, we instead maintain Amτ (z) as a supplemental value contained in the
symbol σzτ . Thus, it is sufficient to compute Amτ (z) from the old value Amτ−1(z) given in the symbol
σzτ−1. Specifically, we show how to efficiently compute the difference Amτ (z) − Amτ−1(z). We observe
that most of the summands are equal in Amτ (z) and in Amτ−1(z) and, therefore, the difference contains a
constant number of summands that we can compute. Specifically we show that for every h1 < τ − 1:

ϕy,τ−1 (h1, t2, t3, s,b) = ϕy,τ (h1, t2, t3, s,b) . (2)

X̃τ−1 (h1, s1) = X̃τ (h1, s1) . (3)

We first use (2) and (3) to show how to efficiently compute Amτ (z) − Amτ−1(z), and then explain why
these equalities hold. Given that (2) and (3) hold for every h1 < τ − 1 we can write the difference
Amτ (z)−Amτ−1(z) as:

Amτ (z)−Amτ−1(z) =ID (τ, t1) · ϕy,τ (τ, t2, t3, s,b) ·
(
X̃τ (τ, s1)− b1

)
+ ID (τ − 1, t1) · ϕy,τ (τ − 1, t2, t3, s,b) ·

(
X̃τ (τ − 1, s1)− b1

)
− ID (τ − 1, t1) · ϕy,τ−1 (τ − 1, t2, t3, s,b) ·

(
X̃τ−1 (τ − 1, s1)− b1

)

Recall that the circuits ϕy,τ and ϕy,τ−1 can be efficiently evaluated given the input y and the assignments
γτ and γτ−1. Therefore, it remains to compute the values:

X̃τ (τ, s1) , X̃τ (τ − 1, s1) , X̃τ−1 (τ − 1, s1) .

By (1), for any h ≤ τ the value X̃τ (h, s1) is just a linear combination of the values assigned to the h-th
row:

X̃τ (h, s1) =
∑

h′∈Hk
IDk(h

′, s1) ·Xτ (h,h′) =
∑

h′∈Hk
IDk(h

′, s1) · γh(h′) . (4)

Therefore, we can compute the required evaluations of X̃τ and X̃τ−1 given the assignments γτ and γτ−1.
To complete the description of the update procedure for Qm, we argue that (2) and (3) hold. For (2) we
first observe that formulas φy,τ−1 = φy ∧φτ−1 and φy,τ = φy ∧φτ only differ on clauses over variables
in rows τ − 1 and τ . Therefore, if it was the case that z ∈ H` and h1 < τ − 1 then (2) would hold. We
show how to appropriately modify the definition of the polynomial ϕy,τ so that (2) holds for all z ∈ F`
as long as h1 ∈ Hm. Recall that the polynomial ϕy,τ = ϕy +ϕτ describes the formula φy,τ = φy ∧ φτ .

9

We can assume WLOG that every clause in φτ on variables (t′1, s
′
1), (t′2, s

′
2), (t′3, s

′
3) ∈ Hm+k satisfies

t′1 = τ . Therefore, we can redefine ϕy,τ as:

ϕy,τ (z) = ϕy(z) + IDm(t1, τ) · ϕτ (z) .

The new polynomial ϕy,τ (z) still represents the same formula φy,τ and (2) holds since for h1 < τ − 1
we have:

ϕy,τ−1 (h1, t2, t3, s,b) = ϕy(h1, t2, t3, s,b) = ϕy,τ (h1, t2, t3, s,b) .

To see why (3) holds, recall that by (4), since h1 ≤ τ−1 the value X̃τ (h1, s1) is just a linear combination
of the values assigned to the h1-th row and therefore:

X̃τ−1 (h1, s1) =
∑
h∈Hk

IDk(h, s1) · γh1(h) = X̃τ (h1, s1) .

Updating Qj for j < m. The final case we consider in this overview is 0 < j < m. Here we want to
compute:

Qjτ (z) =
∑
h∈Hj

ID (h, t1[:j]) ·Q0
τ (h, t1[j + 1:], t2, t3, s,b) ,

where t1[:j] and t1[j+ 1:] denote the j-bit prefix and the (m− j)-bit suffix of t1 respectively. This case
is very similar to the case j = m with the added difficulty that now only the first j inputs to Q0

τ are in
H (as opposed to the previous case, where the entire first index was in H). In the case where j = m we
argued that when u ∈ Hm, either u ≤ τ and LE(u, τ) = 1, or u > τ and LE(u, τ) = 0. Now, however,
only the first j bits of u are in H and the rest may be in F. Thus, it is not immediately clear whether
we can say anything about the output of LE(u, τ). We show that in some cases the outcome of LE(u, τ)
can be determined given only the prefix of the inputs that is in H. Specifically, using the fact that LE
has individual degree (|H| − 1), we show that for u ∈ Hj × Fm−j if u[:j] > τ [:j] then LE(u, τ) = 0.
Therefore, we can write Qjτ (z) as:

Qjτ (z) =
∑

h≤τ [:j]

ID (h, t1[:j]) ·Q0
τ (h, t1[j + 1:], t2, t3, s,b) .

As before, since we have already computed the values Xτ (t2, s2) and Xτ (t3, s3), it is sufficient to show
how to maintain the sum Ajτ (z,b) as a supplemental value in σzτ :

Ajτ (z) =
∑

h≤τ [:j]

ID (h, t1[:j]) · ϕy,τ (h, t1[j + 1:], t2, t3, s,b) ·
(
X̃τ (h, t1[j + 1:], s1)− b1

)
.

As before, in order to compute the difference Ajτ (z) − Ajτ−1(z) we first need to show that, analo-
gously to (2) and (3) above, for every h < (τ − 1)[:j]:

ϕy,τ−1 (h, t1[j + 1:], t2, t3, s,b) = ϕy,τ (h, t1[j + 1:], t2, t3, s,b) . (5)

X̃τ−1 (h, t1[j + 1:], s1) = X̃τ (h, t1[j + 1:], s1) . (6)

The proof of (5) follows the same argument as (2) except that now we also use the fact that for h < τ [:j]
it holds that IDm((h, t1[j + 1:]) , τ) = 0 even when t1 is not in Hm. To see why (6) holds recall that by
(1) for h < τ [:j] and any u ∈ Fm−j the value X̃τ ((h,u), s1) is just a linear combination of the values
assigned to rows whose indices (in Hm) start with the prefix h where X̃τ and X̃τ−1 identify on these
rows:

X̃τ ((h,u), s1) =
∑

(h′,h′′)∈Hm−j×Hk
ID((h′,h′′), (u, s)) · γ(h,h′)(h

′′) = X̃τ−1 ((h,u), s1) .

10

Let u denote the vector (t1[j+ 1:], s1) ∈ Fm−j+k. Similarly to the previous case, it remains to compute
the values:

X̃τ (τ [:j],u) , X̃τ ((τ − 1)[:j],u) , X̃τ−1 ((τ − 1)[:j],u) .

As explained above, the value X̃τ (τ [:j],u) is a linear combination of the values assigned to rows in
whose indices (in Hm) start with the prefix τ [:j]. The number of such rows can be proportional to τ , so
this values cannot be efficiently computed from scratch. Instead, we update these values using additional
supplemental values, which we place in σzτ and maintain:

X̃τ (τ [:j],u) , X̃τ ((τ − 1)[:j],u) .

We explain how to compute X̃τ (τ [:j],u) given X̃τ−1 ((τ − 1)[:j],u) (updating X̃τ ((τ − 1)[:j],u) is
done similarly). First, recall that the value X̃τ (τ [:j],u) is a linear combinations of the values assigned
to rows whose indices (in Hm) start with the prefix τ [:j]:

X̃τ (τ [:j],u) =
∑

h∈Hm−j+k
ID(h,u) ·Xτ (τ [:j],h) .

When updating X̃τ (τ [:j],u), we distinguish between two cases. First we consider the case where
τ [:j] = (τ − 1)[:j]. In this case, both values X̃τ (τ [:j],u) and X̃τ−1 ((τ − 1)[:j],u) are computed from
the values assigned to the same set of rows whose indices start with the prefix τ [:j] = (τ − 1)[:j].
Since the assignment Xτ−1 and Xτ only differ on the τ -th row where Xτ−1(τ, ·) is identically zero and
Xτ (τ, ·) = γτ we have that:

X̃τ (τ [:j],u)− X̃τ−1 ((τ − 1)[:j],u) =
∑

h′∈Hk
ID((τ [j + 1:],h′),u) · γτ (h′) .

Therefore, in this case we can compute the value X̃τ (τ [:j],u) given X̃τ−1 ((τ − 1)[:j],u) by summing
the O(S′) summands above. Next, we consider the case where τ [:j] 6= (τ − 1)[:j]. In this case, the τ -th
row is the only row that starts with the prefix τ [:j] and assigned a non-zero value by Xτ . Therefore, in
this case we can directly compute the value X̃τ (τ [:j],u)

Updating Qj for j > m. Updating Qjτ (z) for j > m involves many of the ideas described above. The
main difference is that in this case we do not only sum over the first row index. To update the sum we
rely on the fact that the polynomial ϕy,τ evaluates to 0 whenever the indices t2 and t3 are different than
t1 − 1. As in the case where j < m, here we also need to deal with the cases where only a prefix of the
row indices is in H.

2.4 From PCP to Verifiable Computation.

As discussed in Section 1.1, our designated-verifier incrementally verifiable computation protocol is ba-
sically the protocol of BHK [BHK16, Appendix A], where the PCP is replaced by our incrementally
updatable PCP. In particular, our verification procedure is essentially identical to that of BHK (ignoring
the supplemental values in every symbol that are not part of the original PCP of BFLS). There is, how-
ever, a minor differences between our PCP and the PCP in BHK which affects the verification procedure:
in our PCP, the sum-check polynomialQj is the low-degree extension ofQ0 in its first j variables, while
in BHK, Qj and Q0 satisfy a different relation. However, the analysis in BHK [BHK16, Appendix B]
with only minor changes fits our construction as well.

3 Definitions

In this section we define incrementally updatable PCPs and verifiable computation.

11

3.1 Incrementally Updatable PCP

We start by recalling the standard notion of a probabilistically checkable proof (PCP) and then define
incremental updates. Fix a non-deterministic Turing machine M with running time T = T(n). For an
input y ∈ {0, 1}n and a witness string w ∈ {0, 1}t where t ∈ [T], let M(y;w) denote the configuration
of M when executing on input y after t steps using w as a witness. The configuration includes the
machine’s work tapes, state, and the machine’s locations on all tapes. Let LM be the language that
contains a tuple (y, t, c) if there existsw ∈ {0, 1}t such that c = M(y;w). LetRM be the corresponding
witness relation. A PCP system for M with alphabet Σ = {Σn}n∈N, query complexity q = q(n), and
proof length ` = `(n) consists of a deterministic polynomial-time algorithm P and a randomized oracle
machine V with the following syntax:

P : given (x = (y, t, c), w) ∈ RM outputs a proof Π ∈ Σ`.

V : given x and oracle access to the proof Π makes q oracle queries and outputs a bit.

Definition 3.1. A PCP system (P,V) satisfies the following requirements

Completeness: For every (x,w) ∈ RM , let Π = P(x,w). It holds that:

Pr
[
VΠ(x) = 1

]
= 1 .

Soundness: For every x /∈ LM and for every Π ∈ Σ`:

Pr
[
VΠ(x) = 1

]
≤ 1

2
.

Incremental updates. In an incrementally updatable PCP, each location in the proof string can be
maintained and updated in a step-by-step fashion: given the machine’s configuration and the value of
the PCP at a certain location z after t steps of the computation, the updated value of the PCP at location
z after (t+ 1) steps can be computed locally, without looking at any PCP symbols except the symbol in
location z. Note that the “updated PCP” proves an “updated claim” about the (t + 1)-th configuration.
Note also that, while this local update does require knowledge of the entire current configuration (whose
size is dominated by the machine’s space complexity), this can be much smaller than the length of
the PCP (which is larger than the machine’s time complexity). Formally, an incrementally updatable
PCP comes with a deterministic polynomial-time algorithm Update with the following syntax: given
an instance (y, t− 1, ct−1), a witness bit wt, a position z ∈ [`], and symbol σzt−1 ∈ Σ outputs a new
symbol σzt ∈ Σ. For every (x = (y, t, ct), w) ∈ RM , the PCP proof Πt = P(x,w) can be constructed
by running Update as follows:

1. Let c0 be the initial configuration of M(y) and let σz0 = ⊥.

2. For every τ ∈ [t], z ∈ [`], update M ’s configuration from cτ−1 to cτ using witness bit wτ and let:

σzτ ← Update((y, τ − 1, cτ−1) , wτ , z, σ
z
τ−1) .

3. Output the proof Πt =
(
σ1
t , . . . , σ

`
t

)
.

3.2 Incrementally Verifiable Computation

We start with the definition of verifiable computation and then define incremental updates. Fix a deter-
ministic Turing machine M with running time T = T(n). For an input y ∈ {0, 1}n and t ∈ [T], let
M(y; 1t) be the configuration of M when executing on input y after t steps (a configuration includes

12

the machine’s work tapes, state, and the machine’s locations on all tapes). Let LM be the language
that contains a tuple (y, t, c) if c = M(y; 1t). A verifiable computation scheme consists of a random-
ized polynomial-time algorithm G and deterministic polynomial time algorithms P,V with the following
syntax:

G: given the security parameter 1κ, outputs a pair of keys: a prover key pk and a verifier key vk.

P: given the prover key pk, a time bound 1t and an instance x = (y, t, c), outputs a proof Π.

V: given the verifier key vk, an instance x and a proof Π, outputs a bit.

We say that the proof is publicly verifiable if the algorithm G always outputs identical prover and verifier
keys vk = pk. Otherwise the proof is designated verifier.

Definition 3.2. A verifiable computation scheme (G,P,V) for LM satisfies the following requirements:

Completeness: For every κ ∈ N and for every x = (y, t, c) ∈ LM :

Pr

[
V(vk, x,Π) = 1

∣∣∣∣ (pk, vk)← G(1κ)
Π← P(pk, 1t, x)

]
= 1 .

Efficiency: In the above honest experiment the length of the proof Π is poly(κ, log(t)). The verifier’s
running time is |x| · poly(κ, |Π|).

Soundness: For every polynomial T = T(κ) and for every polynomial size cheating prover P∗ there
exists a negligible function µ such that for every κ ∈ N:

Pr

[
x = (y,T, c) /∈ LM
V(vk, x,Π) = 1

∣∣∣∣ (pk, vk)← G(1κ)
(x,Π)← P∗(pk)

]
≤ µ(κ) .

Incremental updates. A verifiable computation scheme (with either public or designated verifier) sat-
isfying Definition 3.2 is incrementally verifiable if given the honest proof Πt for a statement (y, t, ct)
and the configuration ct we can obtain the next proof Πt+1 for the statement (y, t+ 1, ct+1) without re-
peating the entire computation. Formally, an incrementally verifiable computation scheme also includes
a deterministic polynomial-time algorithm Update with the following syntax: given the prover key pk, a
statement (y, t− 1, ct−1) ∈ LM and a proof Πt−1, Update outputs a new proof Πt. For every statement
x = (y, t, c) ∈ LM , the proof Πt = P(pk, 1t, x) can be constructed by running Update as follows:

1. Let c0 be the initial configuration of M(y) and let Π0 = ⊥.

2. For every τ ∈ [t], update M ’s configuration from cτ−1 to cτ and let:

Πτ ← Update(pk, (y, τ − 1, cτ−1) ,Πτ−1) .

3. Output Πt.

The completeness, efficiency, and soundness requirements of

4 PCP Construction

In this section we introduce notation and describe the PCP system. The update procedure for this PCP
is described in the next section. Before reading the full details, we recommend the reader familiarize
themselves with the overview in Section 2.

13

4.1 Preliminaries

We start by introducing notations and simple clams that are used throughout the following sections.

Operations on strings. For an alphabet Σ, a string v = v1, . . . , vn ∈ Σn and 1 ≤ i ≤ j ≤ n we
denote by v[i:j] the substring vi, . . . , vj . We shorthand v[1:i] by v[:i] and v[j:n] by v[j:]. We also
define v[:0] and v[n+1:] to be the empty string. For a pair of strings u,v ∈ Σn and i ∈ [0, n] let (u|v)i
denote the string (u[:i],v[i+ 1:]).

The field F. Fix any field F and a subset H ⊆ F. (The sizes of F and H will be set later in this section.)
We also fix a linear order on H and use the lexicographical order on strings in Hm for any m ∈ N. We
denote the minimal and maximal element in H by 0 and |H| − 1 respectively. For t ∈ Hm such that
t > 0m we denote the predecessor of t by t− 1.

Arithmetic circuits. We denote by C : Fi → Fj an arithmetic circuit over a field F with i input wires
and j output wires. The circuit is constructed from addition, subtraction and multiplication gates of arity
2 as well as constants from F. The size of C is the number of gates in C. We say that C is of degree d if
the polynomial computed by C over F is of degree d or less in every one of its input variables.

Useful predicates. We make use of arithmetic circuits computing simple predicates.

Claim 4.1. For every i ∈ N there exist arithmetic circuits IDi, LEi,PRi : F2i → F of size O(i) and
degree |H| − 1 such that for every input u,v ∈ Hi, the circuits’ output is in {0, 1} and:

IDi(u,v) = 1 ⇔ u = v (Identity)

LEi(u,v) = 1 ⇔ u ≤ v (Lesser-or-equal)

PRi(u,v) = 1 ⇔ u− 1 = v (Predecessor)

Proof. For i = 1, circuits ID1, LE1,PR1 exist by straightforward interpolation. For i > 1, u, v ∈ F and
u,v ∈ Fi−1, let u′ = (u,u) and v′ = (v,v). The circuit IDi is given by:

IDi(u
′,v′) = ID1(u, v) · IDi−1(u,v) .

The circuit LEi is given by:

LEi(u
′,v′) = [ID1(u, v) · LEi−1(u,v)] + LE1(u, v)− ID1(u, v) .

The circuit PRi is given by:

PRi(u
′,v′) = ID1(u, v) · PRi−1(u,v)

+ PR1(u, v) · IDi−1(u, 0i−1) · IDi−1(v, (|H| − 1)i−1)

We also rely on the following useful property of the circuits ID, LE,PR. Intuitively, it says that in
some cases, the output of the predicate can be determine from the prefix for the input (even if the rest of
the input is not in H).

Claim 4.2. For every i ∈ N, j ∈ [i], t1 = (h1, f1), t2 = (h2, f2) ∈ Hj × Fi−j and h ∈ Hi:

14

• h1 6= h2 ⇒ IDi(t1, t2) = 0.

• h1 > h2 ⇒ LEi(t1, t2) = 0.

• h1 < h2 ⇒ LEi(t1, t2) = 1.

• (h− 1)[:j] 6= h1 ⇒ PRi(h, t1) = 0.

The proof of Claim 4.2 follows from the next fact.

Fact 4.3. Let ϕ : Fi → F be an arithmetic circuit of degree (|H| − 1). For every j ∈ [i], t ∈ Hj and
b ∈ {0, 1}:

∀h ∈ Hi−j : ϕ(t,h) = b ⇒ ∀f ∈ Fi−j : ϕ(t, f) = b .

4.2 The Constraints

In this section we give an algebraic representation of the constraints of a computation through the notion
of a constraint circuit.

The tableau formula. Let M be a non-deterministic Turing machine with running time T = T(n)
and space complexity S = S(n). By the Cook-Levin theorem the computation of M on some input can
be described by T′ · S′ Boolean variables where T′ = T · β and S′ = S · β for some constant β ∈ N.
Intuitively, we think the variables as organized in a table with T′ rows S′ columns. The variables in row
β ·t correspond to the configuration ofM after t steps. All other rows, whose indices are not a multiple of
β, contain auxiliary variables used to verify the consistency of adjacent configurations. An assignment
to the variables describes a valid computation of M (with any witness) if and only if it satisfies a 3CNF
“tableau formula” φy.

Claim 4.4 (Cook-Levin-Karp). There exists a constant β such that for every input y ∈ {0, 1}n there
exists a 3CNF formula φy over the variables {xt,s}t∈[T′],s∈[S′] where T′ = β ·T and S′ = β ·S such that
the following holds:

Completeness: For every witness w ∈ {0, 1}T there exists an assignment Xy,w : [T′] × [S′] → {0, 1}
that satisfies φy. Moreover, for any t ∈ [T], given only the configuration ct = M(y;w[:t]) we can
compute a row assignment γct : [S′] → {0, 1} such that Xy,w(t · β, ·) = γct . Similarly, for any
(t − 1) · β < τ ≤ t · β, given only the configuration ct−1 = M(y;w[:t − 1]) and the witness bit
wt we can compute a row assignment γct−1,wt

τ : [S′]→ {0, 1} such that Xy,w(τ, ·) = γ
ct−1,wt
τ .

Soundness: For any assignment X : [T′] × [S′] → {0, 1} that satisfies φy there exists a witness w
such that X = Xy,w. Moreover, for every t ∈ [T] and configuration c, if X(t · β, ·) = γc then
c = M(y;w[:t]).

Leveled structure: Every constraint in φy is of the form (xt1,s1 = b1) ∨ (xt2,s2 = b2) ∨ (xt3,s3 = b3)
where t1 − 1 = t2 = t3.

The configuration formula. For every τ ∈ [T′] and a row assignment γ : [S′]→ {0, 1} we define a a
3CNF “configuration formula” φτ,γ over the same variables as the tableau formula φy checking that the
τ -th row assignment is equal to γ. That is:

• If τ = t · β for some t ∈ [T] then φτ,γ is satisfied by an assignments X : [T′] × [S′] → {0, 1} if
and only if X(τ, ·) = γ.

• Otherwise, φτ,γ = 1 is the empty formula.

15

For technical reasons, we assume WLOG that all the constraints in φτ,γ are of the form (xt1,s1 = b1) ∨
(xt2,s2 = b2) ∨ (xt3,s3 = b3), where τ = t1. Additionally we assume that φτ,γ has the same leveled
structure as the tableau formula. That is, t1 − 1 = t2 = t3. For τ that is not a multiple of β, φτ,γ is the
empty formula so our assumptions on the structure of φτ,γ hold vacuously.

Arithmetizing the constraint formula. Let F be a field of size Θ(log2 T′), let H ⊂ F be a subset of
size dlogT′e such that {0, 1} ⊆ H and let

m =
logT′

log logT′
, k =

log S′

log logT′
.

We assume WLOG that m, k and logT′ are all integers and, therefore, |Hm| = T′ and |Hk| = S′. We
identify elements of Hm (with lexicographic order) with indices in [T], and elements in Hk with indices
in [S]. We view an assignment X for the variables {xt,s} as a function X : Hm+k → {0, 1}.

Constraint circuits. We can implicitly represent a 3CNF formula φ over the variables {xt,s} using a
multivariate polynomial. Intuitively, this polynomial represents the indicator function indicating whether
a given 3-disjunction is in the formula. We represent this polynomial via an arithmetic circuit over F.

Definition 4.5 (Constraint circuit). An arithmetic circuit ϕ : F3(m+k+1) → F is a constraint circuit
representing a 3CNF formula φ over the variables {xt,s}t∈Hm,s∈Hk if for every t1, t2, t3 ∈ Hm,
s1, s2, s3 ∈ Hk and b1, b2, b3 ∈ {0, 1} if φ contains the constraint:

(xt1,s1 = b1) ∨ (xt2,s2 = b2) ∨ (xt3,s3 = b3) ,

then ϕ evaluates to 1 on (t1, t2, t3, s1, s2, s3, b1, b2, b3). Otherwise ϕ evaluates to 0.

Next, we claim that the tableau formula and configuration formula can be efficiently represented as
constraint circuits. The proof is standard and it is omitted.

Claim 4.6. For every input y ∈ {0, 1}n, τ ∈ [T′] and assignment γ : Hk → {0, 1} let φy and φτ,γ be
the tableau formula and the configuration formula defined above.

• Given y we can efficiently compute a tableau constraint circuit ϕy of size O(n) + poly(m) and
degree poly(m, k) describing φy.

• Given τ and γ we can efficiently compute a configuration constraint circuit ϕτ,γ of size S·poly(m)
and degree O(1) describing φτ,γ .

The constraint circuit ϕ̃. The constraint circuit ϕ̃ used in our PCP construction is a combination of
the constraint circuit and predicates above. Let φy and φτ,γ be the tableau and configuration formulas
defined above and let ϕy and ϕτ,γ be the constraint circuits that describe them, given by Claim 4.6. For
t1, t2, t3 ∈ Fm and f ∈ F3k+3, let ϕ̃y,τ,γ be the circuit give by:

ϕ̃y,τ,γ(t1, t2, t3, f) = PRm(t1, t2) · PRm(t1, t3) · (ϕy(t1, t2, t3, f) + IDm(τ, t1) · ϕτ,γ(t1, t2, t3, f)) .

Claim 4.7. For every y ∈ {0, 1}n, τ ∈ Hm, γ : Hk → {0, 1}, ϕ̃y,τ,γ describes the 3CNF formula
φy ∧ φτ,γ . Moreover, for every τ ′ ∈ Hm, γ′ : Hk → {0, 1}, i < m, t1, t2, t3 ∈ Hi × Fm−i, h ∈ Hm

and f ∈ F3k+3:

{t2[:i], t3[:i]} 6= {(h− 1)[:i]} ⇒ ϕ̃y,τ,γ(h, t2, t3, f) = 0 ,

t1[:i] /∈
{
τ [:i], τ ′[:i]

}
⇒ ϕ̃y,τ,γ(t1, t2, t3, f) = ϕ̃y,τ ′,γ′(t1, t2, t3, f) .

Proof sketch. Since the tableau constraints and the configuration constraints are disjoint, the circuit
ϕy + ϕτ,γ describes the 3CNF formula φy ∧ φτ,γ . By the leveled structure of the formulas φy and φτ,γ
the circuit ϕy +ϕτ,γ identifies with ϕ̃y,τ,γ on H3(m+k+1). The rest of the claim follows from the leveled
structure of the formulas φy and φτ,γ and by Claim 4.2.

16

4.3 The Proof String

Recall that for every t ∈ [T] and z ∈ [`], σzt ∈ Σ denotes the z-th symbol of the proof after t updates. We
start by specifying the value of σzt and in the next section we describe the procedure Update maintaining
it. Next we introduce some notation and describe the different components of the PCP. See Section 2 for
a high level overview of the construction.

The first part of our construction closely follows the PCP of BFLS. Fix y ∈ {0, 1}n and w ∈ {0, 1}T
and let Xy,w be the assignment given by Claim 4.4. For τ ∈ Hm we define:

• Let γτ : Hk → {0, 1} be the row assignment γτ = Xy,w(τ, ·).

• Let Xτ : Hm+k → {0, 1} be the assignment such that Xτ (t, ·) = γt for all t ≤ τ and for all
t > τ , Xτ (t, ·) is identically zero.

• Let X̃τ : Fm+k → F be the polynomial of degree |H| − 1 that identifies with Xτ on Hm+k:

X̃τ (f) =
∑

h∈Hm+k

ID (h, f) ·Xτ (h)

• Let Q0
τ : F3(m+k+1) → F be the following polynomial. For z = (t1, t2, t3, s1, s2, s3) ∈ F3(m+k),

b = (b1, b2, b3) ∈ F3 and z̄ = (z,b):

Q0
τ (z̄) = LE (t1, τ) · ϕ̃y,τ,γτ (z̄) ·

∏
i∈[3]

(
X̃τ (ti, si)− bi

)
.

• For j ∈ [3(m+ k)] let Qjτ : F3(m+k+1) → F be the polynomial:

Qjτ (f) =
∑
h∈Hj

ID (h, f [:j]) ·Q0
τ (h, f [j + 1:]) .

Next we introduce additional polynomials that are not a part of the BFLS construction). These
polynomials define the supplemental values added to the PCP to support updates.

First we define polynomials A0
τ , B

0
τ , C

0
τ by multiplying together subsets of the factors of Q0

τ . Let
A0
τ , B

0
τ , C

0
τ : F3(m+k+1) → F be the following polynomials. For z = (t1, t2, t3, s1, s2, s3) ∈ F3(m+k),

b = (b1, b2, b3) ∈ F3, and z̄ = (z,b):

A0
τ (z̄) = ϕ̃y,τ,γτ (z̄) ·

(
X̃τ (t1, s1)− b1

)
,

B0
τ (z̄) = ϕ̃y,τ,γτ (z̄) ·

(
X̃τ (t1, s1)− b1

)
·
(
X̃τ (t2, s2)− b2

)
,

C0
τ (z̄) = ϕ̃y,τ,γτ (z̄) ·

(
X̃τ (t1, s1)− b1

)
·
(
X̃τ (t2, s2)− b2

)
·
(
X̃τ (t3, s3)− b3

)
.

Next we define the polynomials Ajτ , B
j
τ , C

j
τ . Similar to the definition of Qjτ via Q0

τ , the evaluations
of Ajτ , B

j
τ and Cjτ on input z̄ ∈ F3(m+k+1) are given by a weighted sum of evaluations of A0

τ , B
0
τ and

C0
τ respectively, over inputs z̄′ whose prefix is in H and suffix in equal to that of z̄. However, unlike

the definition of Qjτ , we do not sum over all possible prefixes in H, but only over prefixes with a certain
structure. Specifically:

• Ajτ sums over prefixes h ∈ Hj such that h < τ [:j].

• Bj
τ sums over prefixes (h, (h− 1)[:j]) ∈ Hm+j such that 0m < h < τ .

• Cjτ sums over prefixes (h,h− 1, (h− 1)[:j]) ∈ H2m+j such that 0m < h < τ .

17

Formally, for j ∈ [m] let Ajτ , B
j
τ , C

j
τ : F3(m+k+1) → F be the following polynomials. For z =

(t1, t2, t3, s1, s2, s3) ∈ F3(m+k), b = (b1, b2, b3) ∈ F3 and z̄ = (z,b):

Ajτ (z̄) =
∑

h<τ [:j]

ID (h, z̄[:j]) ·A0
τ (h, z̄[j + 1:]) ,

Bj
τ (z̄) =

∑
0m<h<τ

ID ((h, (h− 1)[:j]) , z̄[:m+ j]) ·B0
τ

(
((h,h− 1) |z̄)m+j

)
,

Cjτ (z̄) =
∑

0m<h<τ

ID ((h,h− 1, (h− 1)[:j]) , z̄[:2m+ j]) · C0
τ

(
((h,h− 1,h− 1) |z̄)2m+j

)
.

Finally, we define polynomials Ājτ , B̄
j
τ , C̄

j
τ . These are defined similarly to Ajτ , B

j
τ , C

j
τ except that

we sum over different prefixes:

• Ājτ sums over prefixes (h, (h− 1)[:j]) ∈ Hm+j such that 0m < h < τ and (h− 1)[:j] = τ [:j].

• B̄j
τ sums over prefixes (h,h− 1, (h− 1)[:j]) ∈ H2m+j such that 0m < h < τ and (h− 1)[:j] =

τ [:j].

• C̄jτ sums over prefixes (h,h− 1,h− 1,h′) ∈ H3m+j such that 0m < h < τ and h′ ∈ Hj .

Formally, for j ∈ [m] let Ājτ , B̄
j
τ : F3(m+k+1) → F be the following polynomials. For z =

(t1, t2, t3, s1, s2, s3) ∈ F3(m+k), b = (b1, b2, b3) ∈ F3 and z̄ = (z,b):

Ājτ (z̄) =
∑

0m<h<τ
(h−1)[:j]=τ [:j]

ID ((h, τ [:j]) , z̄[:m+ j]) ·A0
τ

(
((h, τ) |z̄)m+j

)
,

B̄j
τ (z̄) =

∑
0m<h<τ

(h−1)[:j]=τ [:j]

ID ((h,h− 1, τ [:j]) , z̄[:2m+ j]) ·B0
τ

(
((h,h− 1, τ) |z̄)2m+j

)
,

For j ∈ [3k] let C̄jτ : F3(m+k+1) → F be the following polynomial:

C̄jτ (z̄) =
∑

0m<h<τ
h′∈Hj

ID
((
h,h− 1,h− 1,h′

)
, z̄[:3m+ j]

)
· C0

τ

(
h,h− 1,h− 1,h′, z̄[3m+ j + 1:]

)
.

We are now ready to define the PCP proof string. We set ` = |F|3(m+k) and identify elements of
F3(m+k) with indices in [`].

We first define for every τ ∈ Hm and z = (t1, t2, t3, s1, s2, s3) ∈ F3(m+k) an auxiliary symbol σ̄zτ .
These auxiliary symbols will be useful in defining the update procedure. Then, for every t ∈ [T], we set
the proof symbol σzt to be the symbol σ̄zt·β . The auxiliary symbol σ̄zτ contains the values:

1. X̃τ ((τ |ti)j , si) for every i ∈ [3] and j ∈ [0,m].

2. X̃τ ((τ − 1|ti)j , si) for every i ∈ [3] and j ∈ [0,m]. (Only if τ > 0m.)

3. Qjτ (z,b) for every j ∈ [0, 3(m+ k)] and b ∈ {0, 1}3.

4. Ajτ (z,b), Ājτ (z,b), Bj
τ (z,b), B̄j

τ (z,b), Cjτ (z,b) for every j ∈ [m] and b ∈ {0, 1}3.

5. C̄jτ (z,b) for every j ∈ [3k] and b ∈ {0, 1}3.

The following theorem (that follows from the proof of [BFLS91]) states that the construction above
is indeed a PCP proof. In the following sections we prove that this PCP is incrementally updatable.

Theorem 4.8 (Follows from [BFLS91]). There exists a PCP system (P,V) for M with alphabet Σ =
FO(m+k), query complexity q = poly(m+ k), and proof length ` = |F|3(m+k) = poly(T · S) such that
given ((y, t, c), w) ∈ RM , P outputs the proof Π =

(
σ1
t , . . . , σ

`
t

)
.

18

5 Useful Claims About X̃

In this section we prove some useful claims about the polynomial X̃τ defined in Section 4. We start by
introducing some notation. Let X̃ ′τ : Hm×Fk → F be the function computing the low-degree extension
of every individual row of X̃τ :

X̃ ′τ (t, s) =
∑
h∈Hk

IDk(h, s) ·Xτ (t,h) .

By the definition of Xτ :

For t ≤ τ : X̃ ′τ (t, s) =
∑
h∈Hk

IDk(h, s) · γt(h) (7)

For t > τ : X̃ ′τ (t, s) = 0 (8)

Now, since X̃τ is defined as the low-degree extension of Xτ of we can write X̃τ as follows:

X̃τ (t, s) =
∑

(h1,h2)∈Hm+k

IDm+k((h1,h2), (t, s)) ·Xτ (h1,h2)

=
∑

h1∈Hm
IDm(h1, t) · X̃ ′τ (h1, s) . (9)

Claim 5.1. For every s ∈ Fk, τ ∈ Hm and τ ′ ≤ τ we can efficiently compute X̃τ (τ ′, s) given γτ ′ .

Proof. By (9):

X̃τ (τ ′, s) =
∑

h∈Hm
IDm(h, τ ′) · X̃ ′τ (h, s) = X̃ ′τ (τ ′, s) .

By (7), X̃ ′τ (τ ′, s) can be computed efficiently from γτ ′ . The claim follows.

Claim 5.2. For every j ∈ [0,m], h ∈ Hj , t ∈ Fm−j , s ∈ Fk and τ > 0m, if h < τ [:j] then
X̃τ (h, t, s) = X̃τ−1(h, t, s).

Proof. For h < τ [:j], and for all h′ ∈ Hm−j it follows from (7) that X̃ ′τ (h,h′, s) = X̃ ′τ−1 (h,h′, s).
Therefore, by Claim 4.2:

X̃τ (h, t, s) =
∑

h′∈Hm
IDm

(
h′, (h, t)

)
· X̃ ′τ

(
h′, s

)
=

∑
h′∈Hm−j

IDm−j
(
h′, t

)
· X̃ ′τ

(
h,h′, s

)
=

∑
h′∈Hm−j

IDm−j
(
h′, t

)
· X̃ ′τ−1

(
h,h′, s

)
=
∑

h′∈Hm
IDm

(
h′, (h, t)

)
· X̃ ′τ−1

(
h′, s

)
= X̃τ−1 (h, t, s) .

Claim 5.3. For every (t, s) ∈ Fm+k and τ = 0m we can efficiently compute X̃τ (t, s) given γτ .

19

Proof. By (8) and (9):

X̃τ (t, s) =
∑

h∈Hm
ID(h, t) · X̃ ′τ (h, s)

= ID(τ, t) · X̃ ′τ (τ, s) +
∑
h>τ

ID(h, t) · X̃ ′τ (h, s)

= ID(τ, t) · X̃ ′τ (τ, s) .

By (7), X̃ ′τ (τ, s) can be computed efficiently from γτ . The claim follows.

Claim 5.4. For every (t, s) ∈ Fm+k and τ > 0m we can efficiently compute X̃τ (t, s) given X̃τ−1(t, s)
and γτ .

Proof. By (7), (8) and (9):

X̃τ (t, s) =
∑

h∈Hm
ID(h, t) · X̃ ′τ (h, s)

= ID(τ, t) · X̃ ′τ (τ, s) +
∑
h<τ

ID(h, t) · X̃ ′τ (h, s) +
∑
h>τ

ID(h, t) · X̃ ′τ (h, s)

= ID(τ, t) · X̃ ′τ (τ, s) +
∑
h<τ

ID(h, t) · X̃ ′τ (h, s)

= ID(τ, t) · X̃ ′τ (τ, s) +
∑
h<τ

ID(h, t) · X̃ ′τ−1(h, s)

= ID(τ, t) · X̃ ′τ (τ, s) +
∑

h∈Hm
ID(h, t) · X̃ ′τ−1(h, s)

= ID(τ, t) · X̃ ′τ (τ, s) + X̃τ−1(t, s) .

By (7), X̃ ′τ (τ, s) can be computed efficiently from γτ . The claim follows.

Claim 5.5. For every j ∈ [0,m], t ∈ Fm−j , s ∈ Fk and τ > 0m we can efficiently compute
X̃τ (τ [:j], t, s) given X̃τ−1((τ − 1)[:j], t, s) and γτ .

Proof. If τ [:j] = (τ−1)[:j] the claim follows from Claim 5.4. Otherwise, τ = (τ [:j], 0m−j). Therefore,
by Claim 4.2 and by (8):

X̃τ (τ [:j], t, s) =
∑

h∈Hm
IDm(h, (τ [:j], t)) · X̃ ′τ (h, s)

=
∑

h∈Hm−j
IDm−j(h, t) · X̃ ′τ (τ [:j],h, s)

= IDm−j(0
m−j , t) · X̃ ′τ (τ, s) .

By (7), X̃ ′τ (τ, s) can be computed efficiently from γτ and the claim follows.

6 The Update Procedure

In this section we show how to update the the PCP described in the Section 4.

20

Using the last two configuration. The procedure Update is given as input an instance (y, t−1, ct−1),
witness bit wt, position z and symbol σzt−1 (if t = 1 then σzt−1 = ⊥). In this section we assume that
Update is also given the configuration ct−2 that precedes ct−1 and the witness bit wt−1 (if t = 1 then
ct−2 = ⊥ and wt−1 = ⊥). We explain why this is without loss of generality.

Given a procedure Update that needs the last two configurations ct−2 and ct−1, we explain how
to modify the PCP and construct a procedure Update′ that only needs the last configuration ct−1 (as
defined in Section 3). The high level idea is that given a configuration ct we can compute the two
configuration that can follow it, and add to each proof symbol also the symbols of the proofs of the two
future statements.

Formally, in the new PCP for the instance (y, t, ct) the symbol σ′t in position z contains the symbol
σt of the original proof, as well as two symbols σt+1,0 and σt+1,1 for the proof of the next possible
statements.3 That is, for b ∈ {0, 1}, the symbol σt+1,b is the symbol in position z of the original proof
for the instance (y, t+1, ct+1,b) where ct+1,b is the configuration that follows ct after reading the witness
bit b.

The procedure Update′ is given as input the instance (y, t − 1, ct−1), witness bit wt, position z
and symbol σ′t−1 = (σt−1, σt,0, σt,1) and it outputs the next symbol σ′t = (σt, σt+1,0, σt+1,1). The
procedure sets σt = σt,wt . To obtain the symbol σt+1,b for b ∈ {0, 1}, the procedure first computes the
configuration ct that follows ct−1 after reading the witness bitwt. Then it executes the procedure Update
with the instance (y, t, ct), witness bit b, position z and the symbol σt as well as the configuration ct−1

that precedes ct and the witness bit wt.

Notation. We proceed to the describe the input and output of the procedure Update. The procedure
is given an instance (y, t − 1, ct−1), witness bit wt, position z = (t1, t2, t3, s1, s2, s3) ∈ F3(m+k) and
symbol σzt−1 = σ̄z(t−1)·β (if t = 1 then σzt−1 = ⊥). As explained above, we assume that the procedure
is also given the configuration ct−2 that precedes ct−1 and the witness bit wt−1 (if t = 1 then ct−2 = ⊥
and wt−1 = ⊥).

The procedure compute the output symbol σzt = σ̄zt·β as follows. For every (t − 1) · β < τ ≤ t · β
we use the symbol σ̄zτ−1 the compute the next symbol σ̄zτ . For τ > 0m the symbol σ̄zτ−1 contains the
values: {

X̃τ−1((τ − 1|ti)j , si)
}
i∈[3], j∈[0,m]

,{
X̃τ−1((τ − 2|ti)j , si)

}
i∈[3], j∈[0,m]

(only if τ − 1 > 0m) ,{
Qjτ−1(z,b)

}
j∈[0,3(m+k)], b∈{0,1}3

,{
Ajτ−1(z,b), Ājτ−1(z,b), Bj

τ−1(z,b), B̄j
τ−1(z,b), Cjτ−1(z,b)

}
j∈[m], b∈{0,1}3

,{
C̄jτ−1(z,b)

}
j∈[3k], b∈{0,1}3

.

In the rest of this section we show how to compute the symbol σ̄zτ . Our first step is computing the row
assignments γτ , γτ−1 (if τ > 0m) and γτ−2 (if τ −1 > 0m) . Following Claim 4.4 we set γτ = γ

ct−1,wt
τ .

If τ − 1 = (t− 1) · β we set γτ−1 = γct−1 , otherwise we set γτ−1 = γ
ct−1,wt
τ−1 . If τ − 2 = (t− 1) · β− 1

we set γτ−2 = γ
ct−2,wt−1

τ−2 . If τ−2 = (t−1) ·β we set γτ−2 = γct−1 . Otherwise we set γτ−2 = γ
ct−1,wt
τ−2 .

3For simplicity of notation we omit the script z from the symbols.

21

6.1 Updating X̃

For i ∈ [3] and j ∈ [0,m], we compute the values:

X̃τ

(
(τ − 1|ti)j , si

)
, X̃τ

(
(τ |ti)j , si

)
. (10)

If τ = 0m the values in (10) can be efficiently computed by Claim 5.3. If τ > 0m, by Claim 5.4,
given the values of X̃τ−1 contained in the previous symbol σ̄τ−1 we can efficiently compute the value
X̃τ

(
(τ − 1|ti)j , si

)
, and by Claim 5.5 we can efficiently compute the value X̃τ

(
(τ |ti)j , si

)
. By

Claim 5.4 we can also efficiently compute the value:

X̃τ

(
(τ − 2|ti)j , si

)
. (11)

This value is not a part of the symbol σ̄τ , but we use it in the update procedure.

6.2 Updating A

For j ∈ [m] and b = (b1, b2, b3) ∈ {0, 1}3 let z̄ = (z,b). We compute the value:

Ajτ (z̄) =
∑

h<τ [:j]

ID (h, z̄[:j]) ·A0
τ (h, z̄[j + 1:]) . (12)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. h < (τ − 1)[:j].

2. h = (τ − 1)[:j] and (τ − 1)[:j] < τ [:j].

Part 1. We compute the part of the sum in (12) where h < (τ − 1)[:j]:∑
h<(τ−1)[:j]

ID (h, z̄[:j]) ·A0
τ (h, z̄[j + 1:]) .

By Claim 4.7, for h < (τ − 1)[:j]:

ϕ̃y,τ−1,γτ−1 (h, z̄[j + 1:]) = ϕ̃y,τ,γτ (h, z̄[j + 1:]) .

By Claim 5.2, for h < (τ − 1)[:j]:

X̃τ (h, t1[j + 1:], s1) = X̃τ−1 (h, t1[j + 1:], s1) .

Therefore, by the definition of A0
τ for h < (τ − 1)[:j]:

A0
τ (h, z̄[j + 1:]) = A0

τ−1 (h, z̄[j + 1:]) . (13)

Therefore we can write the sum in this part as:∑
h<(τ−1)[:j]

ID (h, z̄[:j]) ·A0
τ (h, z̄[j + 1:]) =

∑
h<(τ−1)[:j]

ID (h, z̄[:j]) ·A0
τ−1 (h, z̄[j + 1:])

= Ajτ−1(z̄) .

The value Ajτ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, we can efficiently compute
the sum in this part.

22

Part 2. We compute the part of the sum in (12) where h = (τ − 1)[:j]:

ID ((τ − 1)[:j], z̄[:j]) ·A0
τ

(
(τ − 1|z̄)j

)
.

By the definition of A0
τ :

A0
τ

(
(τ − 1|z̄)j

)
= ϕ̃y,τ,γτ

(
(τ − 1|z̄)j

)
·
(
X̃τ

(
(τ − 1|t1)j , s1

)
− b1

)
.

The value X̃τ

(
(τ − 1|t1)j , s1

)
is computed in (10). The circuit ϕ̃y,τ,γτ can be efficiently evaluated

given γτ . Therefore, we can efficiently compute the summand in this part.

6.3 Updating Ā

For j′ ∈ [m] and b = (b1, b2, b3) ∈ {0, 1}3 let j = m+ j′ and z̄ = (z,b). We compute the value:

Āj
′
τ (z̄) =

∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·A0

τ

(
((h, τ) |z̄)j

)
. (14)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. 0m < h < τ − 1 and (h− 1)[:j′] = τ [:j′].

2. 0m < h = τ − 1 and (h− 1)[:j′] = τ [:j′].

Part 1. We compute the part of the sum in (14) where 0m < h < τ − 1 and (h− 1)[:j′] = τ [:j′]:∑
0m<h<τ−1

(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·A0

τ

(
((h, τ) |z̄)j

)
.

First note that if (τ − 1)[:j′] 6= τ [:j′] the sum is empty. Next we compute the sum in the case that
(τ − 1)[:j′] = τ [:j′]. It follows from (13) (with j′ = m) that for h < τ − 1:

A0
τ

(
((h, τ) |z̄)j

)
= A0

τ−1

(
((h, τ) |z̄)j

)
.

Therefore, we can write the sum in this part as:∑
0m<h<τ−1

(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·A0

τ

(
((h, τ) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]=(τ−1)[:j′]

ID
((
h, (τ − 1)[:j′]

)
, z̄[:j]

)
·A0

τ−1

(
((h, τ − 1) |z̄)j

)
= Āj

′

τ−1(z̄) .

The value Āj
′

τ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, we can efficiently compute
the sum in this part.

Part 2. We compute the part of the sum in (14) where 0m < h = τ − 1 and (h− 1)[:j′] = τ [:j′]:

ID
((
τ − 1, τ [:j′]

)
, z̄[:j]

)
·A0

τ

(
((τ − 1, τ) |z̄)j

)
.

By the definition of A0
τ :

A0
τ

(
((τ − 1, τ) |z̄)j

)
= ϕ̃y,τ,γτ

(
((τ − 1, τ) |z̄)j

)
·
(
X̃τ (τ − 1, s1)− b1

)
.

The value X̃τ (τ − 1, s1) is computed in (10). The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ .
Therefore, we can efficiently compute the summand in this part.

23

6.4 Updating B

For j′ ∈ [m] and b = (b1, b2, b3) ∈ {0, 1}3 let let j = m+ j′ and z̄ = (z,b). We compute the value:

Bj′
τ (z̄) =

∑
0m<h<τ

ID
((
h, (h− 1)[:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1) |z̄)j

)
. (15)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. 0m < h < τ and (h− 1)[:j′] = τ [:j′].

2. 0m < h < τ − 1 and (h− 1)[:j′] < τ [:j′].

3. 0m < h = τ − 1 and (h− 1)[:j′] < τ [:j′].

Part 1. We compute the part of the sum in (15) where 0m < h < τ and (h− 1)[:j′] = τ [:j′]:∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((h, τ) |z̄)j

)

By the definition of A0
τ and B0

τ :

B0
τ

(
((h, τ) |z̄)j

)
= A0

τ

(
((h, τ) |z̄)j

)
·
(
X̃τ

(
(τ |t2)j′ , s2

)
− b2

)

Therefore, by the definition of Āj
′
τ we can write the sum in this part as:∑

0m<h<τ
(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((h, τ) |z̄)j

)

=
(
X̃τ

(
(τ |t2)j′ , s2

)
− b2

)
·

∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·A0

τ

(
((h, τ) |z̄)j

)

=
(
X̃τ

(
(τ |t2)j′ , s2

)
− b2

)
· Āj′τ (z̄)

The value Āj
′
τ (z̄) is computed in (14). The value X̃τ

(
(τ |t2)j′ , s2

)
is computed in (10). Therefore, we

can efficiently compute the sum in this part.

Part 2. We compute the part of the sum in (15) where 0m < h < τ − 1 and (h− 1)[:j′] < τ [:j′]:∑
0m<h<τ−1

(h−1)[:j′]<τ [:j′]

ID
((
h, (h− 1)[:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1) |z̄)j

)
.

By Claim 4.7, for h < τ − 1:

ϕ̃y,τ−1,γτ−1

(
((h,h− 1) |z̄)j

)
= ϕ̃y,τ,γτ

(
((h,h− 1) |z̄)j

)
.

24

By Claim 5.2, for h < τ − 1 such that (h− 1)[:j′] < τ [:j′]:

X̃τ−1 (h, s1) = X̃τ (h, s1) ,

X̃τ−1

(
(h− 1|t2)j′ , s2

)
= X̃τ

(
(h− 1|t2)j′ , s2

)
.

Therefore, by the definition of B0
τ for h < τ − 1 such that (h− 1)[:j′] < τ [:j′]:

B0
τ

(
((h,h− 1) |z̄)j

)
= B0

τ−1

(
((h,h− 1) |z̄)j

)
. (16)

Therefore, by the definition of Bj′
τ we can write the sum in this part as:∑

0m<h<τ−1
(h−1)[:j′]<τ [:j′]

ID
((
h, (h− 1)[:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]<τ [:j′]

ID
((
h, (h− 1)[:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h,h− 1) |z̄)j

)

=Bj′

τ−1(z̄)−
∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h, τ) |z̄)j

)
.

The value Bj′

τ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, to compute the sum in this
part it is sufficient to compute the sum:∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h, τ) |z̄)j

)
.

If (τ − 1)[:j′] 6= τ [:j′] the sum is empty. Otherwise, if (τ − 1)[:j′] = τ [:j′], By the Definition of A0
τ , B

0
τ

and Āj
′
τ (z̄) we can write the sum as:∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h, τ [:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h, τ) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]=(τ−1)[:j′]

ID
((
h, (τ − 1)[:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h, τ − 1) |z̄)j

)

=Āj
′

τ−1(z̄) ·
(
X̃τ

(
(τ − 1|t2)j′ , s2

)
− b2

)
.

The value Āj
′

τ−1(z̄) is contained in the previous symbol σ̄τ−1. The value X̃τ

(
(τ − 1|t2)j′ , s2

)
is com-

puted in (10). Therefore, we can efficiently compute the sum in this part.

Part 3. We compute the part of the sum in (15) where 0m < h = τ − 1 and (h− 1)[:j′] < τ [:j′]:

ID
((
τ − 1, (τ − 2)[:j′]

)
, z̄[:j]

)
·B0

τ

(
((τ − 1, τ − 2) |z̄)j

)
.

By the definition of B0
τ :

B0
τ

(
((τ − 1, τ − 2) |z̄)j

)
=ϕ̃y,τ,γτ

(
((τ − 1, τ − 2) |z̄)j

)
·
(
X̃τ (τ − 1, s1)− b1

)
·
(
X̃τ

(
(τ − 2|t2)j′ , s2

)
− b2

)
.

The value X̃τ (τ − 1, s1) is computed in (10). The value X̃τ

(
(τ − 2|t2)j′ , s2

)
is computed in (11).

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently compute the
summand in this part.

25

6.5 Updating B̄

For j′ ∈ [m] and b = (b1, b2, b3) ∈ {0, 1}3 let j = 2m+ j′ and z̄ = (z,b). We compute the value:

B̄j′
τ (z̄) =

∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1, τ) |z̄)j

)
. (17)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. 0m < h < τ − 1 and (h− 1)[:j′] = τ [:j′].

2. 0m < h = τ − 1 and (h− 1)[:j′] = τ [:j′].

Part 1. We compute the part of the sum in (17) where 0m < h < τ − 1 and (h− 1)[:j′] = τ [:j′]:∑
0m<h<τ−1

(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1, τ) |z̄)j

)
.

First note that if (τ − 1)[:j′] 6= τ [:j′] the sum is empty. Next we compute the sum in the case that
(τ − 1)[:j′] = τ [:j′]. It follows from (16) (with j′ = m) that for h < τ − 1:

B0
τ

(
((h,h− 1, τ) |z̄)j

)
= B0

τ−1

(
((h,h− 1, τ) |z̄)j

)
.

Therefore, we can write the sum in this part as:∑
0m<h<τ−1

(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j′]

)
·B0

τ

(
((h,h− 1, τ) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]=(τ−1)[:j′]

ID
((
h,h− 1, (τ − 1)[:j′]

)
, z̄[:j]

)
·B0

τ−1

(
((h,h− 1, τ − 1) |z̄)j

)

=B̄j′

τ−1(z̄) .

The value B̄j′

τ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, we can efficiently compute
the sum in this part.

Part 2. We compute the part of the sum in (17) where 0m < h = τ − 1 and (h− 1)[:j′] = τ [:j′]:

ID
((
τ − 1, τ − 2, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((τ − 1, τ − 2, τ) |z̄)j

)
.

By the definition of B0
τ :

B0
τ

(
((τ − 1, τ − 2, τ) |z̄)j

)
=ϕ̃y,τ,γτ

(
((τ − 1, τ − 2, τ) |z̄)j

)
·
(
X̃τ (τ − 1, s1)− b1

)
·
(
X̃τ (τ − 2, s2)− b2

)
.

The value X̃τ (τ − 1, s1) is computed in (10). The value X̃τ (τ − 2, s2) is computed in (11). The circuit
ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently compute the summand in this
part.

26

6.6 Updating C

For j′ ∈ [m] and b = (b1, b2, b3) ∈ {0, 1}3 let j = 2m+ j′ and z̄ = (z,b). We compute the value:

Cj
′
τ (z̄) =

∑
0m<h<τ

ID
((
h,h− 1, (h− 1)[:j′]

)
, z̄[:j]

)
· C0

τ

(
((h,h− 1,h− 1) |z̄)j

)
. (18)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. 0m < h < τ and (h− 1)[:j′] = τ [:j′].

2. 0m < h < τ − 1 and (h− 1)[:j′] < τ [:j′].

3. 0m < h = τ − 1 and (h− 1)[:j′] < τ [:j′].

Part 1. We compute the part of the sum in (18) where 0m < h < τ and (h− 1)[:j′] = τ [:j′]:∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
· C0

τ

(
((h,h− 1, τ) |z̄)j

)

By the definition of B0
τ and C0

τ :

C0
τ

(
((h,h− 1, τ) |z̄)j

)
= B0

τ

(
((h,h− 1, τ) |z̄)j

)
·
(
X̃τ

(
(τ |t3)j′ , s3

)
− b3

)

Therefore, by the definition of B̄j′
τ we can write the sum in this part as:∑

0m<h<τ
(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
· C0

τ

(
((h,h− 1, τ) |z̄)j

)

=
(
X̃τ

(
(τ |t3)j′ , s3

)
− b3

)
·

∑
0m<h<τ

(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
·B0

τ

(
((h,h− 1, τ) |z̄)j

)

=
(
X̃τ

(
(τ |t3)j′ , s3

)
− b3

)
· B̄j′

τ (z̄)

The value B̄j′
τ (z̄) is computed in (17). The value X̃τ

(
(τ |t3)j′ , s3

)
is computed in (10). Therefore, we

can efficiently compute the sum in this part.

Part 2. We compute the part of the sum in (18) where 0m < h < τ − 1 and (h− 1)[:j′] < τ [:j′]:∑
0m<h<τ−1

(h−1)[:j′]<τ [:j′]

ID
((
h,h− 1, (h− 1)[:j′]

)
, z̄[:j]

)
· C0

τ

(
((h,h− 1,h− 1) |z̄)j

)
.

By Claim 4.7, for h < τ − 1:

ϕ̃y,τ−1,γτ−1

(
((h,h− 1,h− 1) |z̄)j

)
= ϕ̃y,τ,γτ

(
((h,h− 1,h− 1) |z̄)j

)
.

27

By Claim 5.2, for h < τ − 1 such that (h− 1)[:j′] < τ [:j′]:

X̃τ−1 (h, s1) = X̃τ (h, s1) ,

X̃τ−1 (h− 1, s2) = X̃τ (h− 1, s2) ,

X̃τ−1

(
(h− 1|t3)j′ , s3

)
= X̃τ

(
(h− 1|t3)j′ , s3

)
.

Therefore, by the definition of C0
τ for h < τ − 1 such that (h− 1)[:j′] < τ [:j′]:

C0
τ

(
((h,h− 1,h− 1) |z̄)j

)
= C0

τ−1

(
((h,h− 1,h− 1) |z̄)j

)
. (19)

Therefore, by the definition of Cj
′
τ we can write the sum in this part as:∑

0m<h<τ−1
(h−1)[:j′]<τ [:j′]

ID
((
h,h− 1, (h− 1)[:j′]

)
, z̄[:j]

)
· C0

τ

(
((h,h− 1,h− 1) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]<τ [:j′]

ID
((
h,h− 1, (h− 1)[:j′]

)
, z̄[:j]

)
· C0

τ−1

(
((h,h− 1,h− 1) |z̄)j

)

=Cj
′

τ−1(z̄)−
∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
· C0

τ−1

(
((h,h− 1, τ) |z̄)j

)
.

The value Cj
′

τ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, to compute the sum in this
part it is sufficient to compute the sum:∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
· C0

τ−1

(
((h,h− 1, τ) |z̄)j

)
.

If (τ − 1)[:j′] 6= τ [:j′] the sum is empty. Otherwise, if (τ − 1)[:j′] = τ [:j′], By the Definition of B0
τ , C

0
τ

and B̄j′
τ (z̄) we can write the sum as:∑

0m<h<τ−1
(h−1)[:j′]=τ [:j′]

ID
((
h,h− 1, τ [:j′]

)
, z̄[:j]

)
· C0

τ−1

(
((h,h− 1, τ) |z̄)j

)

=
∑

0m<h<τ−1
(h−1)[:j′]=(τ−1)[:j′]

ID
((
h,h− 1, (τ − 1)[:j′]

)
, z̄[:j]

)
· C0

τ−1

(
((h,h− 1, τ − 1) |z̄)j

)

=B̄j′

τ−1(z̄) ·
(
X̃τ

(
(τ − 1|t3)j′ , s3

)
− b3

)
.

The value B̄j′

τ−1(z̄) is contained in the previous symbol σ̄τ−1. The value X̃τ

(
(τ − 1|t3)j′ , s3

)
is com-

puted in (10). Therefore, we can efficiently compute the sum in this part.

Part 3. We compute the part of the sum in (18) where 0m < h = τ − 1 and (h− 1)[:j′] < τ [:j′]:

ID
((
τ − 1, τ − 2, (τ − 2)[:j′]

)
, z̄[:j]

)
· C0

τ

(
((τ − 1, τ − 2, τ − 2) |z̄)j

)
.

28

By the definition of C0
τ :

C0
τ

(
((τ − 1, τ − 2, τ − 2) |z̄)j

)
=ϕ̃y,τ,γτ

(
((τ − 1, τ − 2, τ − 2) |z̄)j

)
·
(
X̃τ (τ − 1, s1)− b1

)
·
(
X̃τ (τ − 2, s2)− b2

)
·
(
X̃τ

(
(τ − 2|t3)j′ , s3

)
− b3

)
.

The value X̃τ (τ − 1, s1) is computed in (10). The values X̃τ (τ − 2, s2) and X̃τ

(
(τ − 2|t3)j′ , s3

)
are

computed in (11) The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently
compute the summand in this part.

6.7 Updating C̄

For j′ ∈ [3k] and b = (b1, b2, b3) ∈ {0, 1}3 let j = 3m+ j′ and z̄ = (z,b). We compute the value:

C̄j
′
τ (z̄) =

∑
0m<h<τ

h′∈Hj′

ID
((
h,h− 1,h− 1,h′

)
, z̄[:j]

)
· C0

τ

(
h,h− 1,h− 1,h′, z̄[j + 1:]

)
. (20)

For τ = 0m the sum is empty. For τ > 0m we compute this sum in parts:

1. 0m < h < τ − 1.

2. 0m < h = τ − 1.

Part 1. We compute the part of the sum in (20) where 0m < h < τ − 1:∑
0m<h<τ−1

h′∈Hj′

ID
((
h,h− 1,h− 1,h′

)
, z̄[:j]

)
· C0

τ

(
h,h− 1,h− 1,h′, z̄[j + 1:]

)
.

It follows from (19) (with j′ = m) that for h < τ − 1:

C0
τ

(
h,h− 1,h− 1,h′, z̄[:j + 1]

)
= C0

τ−1

(
h,h− 1,h− 1,h′, z̄[:j + 1]

)
.

Therefore, we can write the sum in this part as:∑
0m<h<τ−1

h′∈Hj′

ID
((
h,h− 1,h− 1,h′

)
, z̄[:j]

)
· C0

τ

(
h,h− 1,h− 1,h′, z̄[j + 1:]

)
=

∑
0m<h<τ−1

h′∈Hj′

ID
((
h,h− 1,h− 1,h′

)
, z̄[:j]

)
· C0

τ−1

(
h,h− 1,h− 1,h′, z̄[j + 1:]

)
=C̄j

′

τ−1(z̄) .

The value C̄j
′

τ−1 (z̄) is contained in the previous symbol σ̄τ−1. Therefore, we can efficiently compute
the sum in this part.

29

Part 2. We compute the part of the sum in (20) where 0m < h = τ − 1:∑
h′∈Hj′

ID
((
τ − 1, τ − 2, τ − 2,h′

)
, z̄[:j]

)
· C0

τ (τ − 1, τ − 2, τ − 2,h′, z̄[j + 1:]) .

Let s′1, s
′
2, s
′
3 ∈ Fk be such that (s′1, s

′
2, s
′
3) = (h′, z̄[j + 1:]). By the definition of C0

τ :

C0
τ (τ − 1, τ − 2, τ − 2,h, z̄[j + 1:]) =ϕ̃y,τ,γτ (τ − 1, τ − 2, τ − 2,h, z̄[j + 1:])

·
(
X̃τ

(
τ − 1, s′1

)
− b1

)
·
(
X̃τ

(
τ − 2, s′2

)
− b2

)
·
(
X̃τ

(
τ − 2, s′3

)
− b3

)
.

By Claim 5.1, given γτ−1 and γτ−2 we can efficiently compute the values:

X̃τ

(
τ − 1, s′1

)
, X̃τ

(
τ − 2, s′2

)
, X̃τ

(
τ − 2, s′3

)
.

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, since this part contains |H|j′ <
poly(S) summands, we can efficiently compute the sum in this part.

6.8 Updating Q

For j ∈ [0, 3(m + k)] and b = (b1, b2, b3) ∈ {0, 1}3 let z̄ = (z,b). We compute the value Qjτ (z̄) in
each of the following cases:

1. j = 0.

2. j ∈ [m].

3. j ∈ [m+ 1, 2m].

4. j ∈ [2m+ 1, 3m].

5. j ∈ [3m+ 1, 3(m+ k)].

6.8.1 Case 1: j = 0.

By the definition of the polynomial Q0
τ :

Q0
τ (z̄) = LE(t1, τ) · ϕ̃y,τ,γτ (z̄) ·

∏
i∈[3]

(
X̃τ (ti, si)− bi

)
.

The values X̃τ (ti, si) for i ∈ [3] are computed in (10). The circuit ϕ̃y,τ,γτ can be efficiently evaluated
given γτ . Therefore, we can efficiently compute Q0

τ (z̄).

6.8.2 Case 2: j ∈ [m].

In this case we can write Qjτ as:

Qjτ (z̄) =
∑
h∈Hj

ID(h, t1[:j]) ·Q0
τ (h, z̄[j + 1:]) . (21)

We compute this sum in parts:

1. h > τ [:j].

2. h = τ [:j].

3. h < τ [:j].

30

Part 1. We compute the part of the sum in (21) where h > τ [:j]:∑
h>τ [:j]

ID (h, t1[:j]) ·Q0
τ (h, z̄[j + 1:]) .

By Claim 4.2, for h > τ [:j],
LEm ((h, t1[j + 1:]) , τ) = 0 .

Therefore, by the definition of Q0
τ :

Q0
τ (h, z̄[j + 1:]) = 0 ,

and the sum in this part is 0.

Part 2. We compute the part of the sum in (21) where h = τ [:j]:

ID (τ [:j], t1[:j]) ·Q0
τ

(
(τ |z̄)j

)
.

By the definition of Q0
τ :

Q0
τ

(
(τ |z̄)j

)
=LEm

(
(τ |t1)j , τ

)
· ϕ̃y,τ,γτ

(
(τ |z̄)j

)
·
(
X̃τ

(
(τ |t1)j , s1

)
− b1

)
·
∏
i∈[2,3]

(
X̃τ (ti, si)− bi

)
+
(

1− LEm
(

(τ |t1)j , τ
))
· X̃τ

(
(τ |t1)j , s1

)
.

The following values are computed in (10):

X̃τ

(
(τ |t1)j , s1

)
, X̃τ (t2, s2) , X̃τ (t3, s3) .

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently compute the
summand in this part.

Part 3. We compute the part of the sum in (21) where h < τ [:j]:∑
h<τ [:j]

ID(h, t1[:j]) ·Q0
τ (h, z̄[j + 1:]) .

By Claim 4.2, for h < τ [:j] we have LEm((h|t1)j , τ) = 1. Therefore, by the definition of Q0
τ and A0

τ :

Q0
τ (h, z̄[j + 1:]) = A0

τ (h, z̄[j + 1:]) ·
∏
i∈[2,3]

(
X̃τ (ti, si)− bi

)
.

Therefore, by the definition of Ajτ :∑
h<τ [:j]

ID(h, t1[:j]) ·Q0
τ (h, z̄[j + 1:]) = Ajτ (z̄) ·

∏
i∈[2,3]

(
X̃τ (ti, si)− bi

)
.

The value Ajτ (z̄) was computed in (12) and the values X̃τ (t2, s2) and X̃τ (t3, s3) are computed in (10).
Therefore, we can efficiently compute the sum in this part.

31

6.8.3 Case 3: j ∈ [m+ 1, 2m].

Let j′ = j −m ∈ [m]. We can write Qjτ as

Qjτ (z̄) =
∑

h1∈Hm

h2∈Hj
′

ID ((h1,h2) , z̄[:j]) ·Q0
τ (h1,h2, z̄[j + 1:]) . (22)

We compute this sum in parts:

1. h1 > τ .

2. 0m < h1 = τ and h2 = (h1 − 1)[:j′].

3. 0m < h1 < τ and h2 = (h1 − 1)[:j′].

4. h1 = 0m or (0m < h1 ≤ τ and h2 6= (h1 − 1)[:j′]).

Part 1. We compute the part of the sum in (22) where h1 > τ :∑
h1>τ

h2∈Hj
′

ID((h1,h2) , z̄[:j]) ·Q0
τ (h1,h2, z̄[j + 1:]) .

For h1 > τ , by the definition of Q0
τ :

Q0
τ (h1,h2, z̄[j + 1:]) = 0 .

Therefore, the sum in this part is 0.

Part 2. We compute the part of the sum in (22) where 0m < h1 = τ and h2 = (h1 − 1)[:j′]:

ID
((
τ, (τ − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ

(
((τ, τ − 1) |z̄)j

)
.

By the definition of Q0
τ for h1 = τ :

Q0
τ

(
((τ, τ − 1) |z̄)j

)
=ϕ̃y,τ,γτ

(
((τ, τ − 1) |z̄)j

)
·
(
X̃τ (τ, s1)− b1

)
·
(
X̃τ

(
(τ − 1|t2)j′ , s2

)
− b1

)
·
(
X̃τ (t3, s3)− b3

)
.

The following values are computed in (10):

X̃τ (τ, s1) , X̃τ

(
(τ − 1|t2)j′ , s2

)
, X̃τ (t3, s3) .

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently compute the
summand in this part.

32

Part 3. We compute the part of the sum in (22) where 0m < h1 < τ and h2 = (h1 − 1)[:j′]:∑
0m<h1<τ

ID
((
h1, (h1 − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ

(
((h1,h1 − 1) |z̄)j

)
.

By the definition of Q0
τ and B0

τ , for h1 < τ :

Q0
τ (((h1,h1 − 1) |z̄)j) = B0

τ (((h1,h1 − 1) |z̄)j) ·
(
X̃τ (t3, s3)− b3

)
.

Therefore, by the definition of Bj′
τ :∑

0m<h1<τ

ID
((
h1, (h1 − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ

(
((h1,h1 − 1) |z̄)j

)
= Bj′

τ (z̄) ·
(
X̃τ (t3, s3)− b3

)
.

The value Bj′
τ (z̄) was computed in (15) and the value X̃τ (t3, s3) is computed in (10). Therefore, we

can efficiently compute the sum in this part.

Part 4. We compute the part of the sum in (22) where h1 = 0m:∑
h2∈Hj′

ID ((0m,h2) , z̄[:j]) ·Q0
τ (0m,h2, z̄[j + 1:]) .

Or, where 0m < h1 ≤ τ and h2 6= (h1 − 1)[:j′]:∑
0m<h1≤τ

h2 6=(h1−1)[:j′]

ID ((h1,h2) , z̄[:j]) ·Q0
τ (h1,h2, z̄[j + 1:]) .

By Claim 4.7 in both cases ϕ̃y,τ,γτ (h1,h2, z̄[j+1:]) = 0. Therefore, by the definition ofQ0
τ for h1 ≤ τ :

Q0
τ (h1,h2, z̄[j + 1:]) =ϕ̃y,τ,γτ (h1,h2, z̄[j + 1:])

·
(
X̃τ (h1, s1)− b1

)
·
(
X̃τ ((h2|t2)j′ , s2)− b2

)
·
(
X̃τ (t3, s3)− b3

)
= 0 .

Therefore, the sum in this part is 0.

6.8.4 Case 4: j ∈ [2m+ 1, 3m].

Let j′ = j − 2m ∈ [m]. We can write Qjτ as

Qjτ (z̄) =
∑

h1,h2∈Hm

h3∈Hj
′

ID ((h1,h2,h3) , z̄[:j]) ·Q0
τ (h1,h2,h3, z̄[j + 1:]) . (23)

We compute this sum in parts:

1. h1 > τ .

2. 0m < h1 = τ and h2 = h1 − 1 and h3 = (h1 − 1)[:j′].

3. 0m < h1 < τ and h2 = h1 − 1 and h3 = (h1 − 1)[:j′].

4. h1 = 0m or (0m < h1 ≤ τ and (h2 6= h1 − 1 or h3 6= (h1 − 1)[:j′])).

33

Part 1. We compute the part of the sum in (23) where h1 > τ :∑
h1>τ
h2∈Hm

h3∈Hj
′

ID ((h1,h2,h3) , z̄[:j]) ·Q0
τ (h1,h2,h3, z̄[j + 1:]) .

For h1 > τ , by the definition of Q0
τ :

Q0
τ (h1,h2,h3, z̄[j + 1:]) = 0 .

Therefore, the sum in this part is 0.

Part 2. We compute the part of the sum in (23) where 0m < h1 = τ , h2 = h1 − 1 and h3 =
(h1 − 1)[:j′]:

ID
((
τ, τ − 1, (τ − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ (((τ, τ − 1, τ − 1) |z̄)j) .

By the definition of Q0
τ for h1 = τ :

Q0
τ

(
((τ, τ − 1, τ − 1) |z̄)j

)
=ϕ̃y,τ,γτ

(
((τ, τ − 1, τ − 1) |z̄)j

)
·
(
X̃τ (τ, s1)− b1

)
·
(
X̃τ (τ − 1, s2)− b1

)
·
(
X̃τ

(
(τ − 1|t3)j′ , s3

)
− b3

)
.

The following values are computed in (10):

X̃τ (τ, s1) , X̃τ (τ − 1, s2) , X̃τ

(
(τ − 1|t3)j′ , s3

)
.

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, we can efficiently compute the
summand in this part.

Part 3. We compute the part of the sum in (23) where 0m < h1 < τ , h2 = h1 − 1 and h3 =
(h1 − 1)[:j′]:∑

0m<h1<τ

ID
((
h1,h1 − 1, (h1 − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ

(
((h1,h1 − 1,h1 − 1) |z̄)j

)
.

By the definition of Q0
τ and C0

τ , for h1 < τ :

Q0
τ (((h1,h1 − 1,h1 − 1) |z̄)j) = C0

τ (((h1,h1 − 1,h1 − 1) |z̄)j) .

Therefore, by the definition of Cj
′
τ :∑

0m<h1<τ

ID
((
h1,h1 − 1, (h1 − 1)[:j′]

)
, z̄[:j]

)
·Q0

τ

(
((h1,h1 − 1,h1 − 1) |z̄)j

)
= Cj

′
τ (z̄) .

The value Cj
′
τ (z̄) was computed in (18). Therefore, we can efficiently compute the sum in this part.

34

Part 4. We compute the part of the sum in (23) where h1 = 0m:∑
h2∈Hm

h3∈Hj
′

ID ((0m,h2,h3) , z̄[:j]) ·Q0
τ (0m,h2,h3, z̄[j + 1:]) .

Or, where 0m < h1 ≤ τ and h2 6= h1 − 1:∑
0m<h1≤τ
h2 6=h1−1

h3∈Hj
′

ID ((h1,h2,h3) , z̄[:j]) ·Q0
τ (h1,h2,h3, z̄[j + 1:]) .

Or, where 0m < h1 ≤ τ , h2 = h1 − 1 and h3 6= (h1 − 1)[:j′]:∑
0m<h1≤τ

h3 6=(h1−1)[:j′]

ID ((h1,h1 − 1,h3) , z̄[:j]) ·Q0
τ (h1,h1 − 1,h3, z̄[j + 1:]) .

By Claim 4.7 in all three cases ϕ̃y,τ,γτ (h1,h2,h3, z̄[j + 1:]) = 0. Therefore, by the definition of Q0
τ for

h1 ≤ τ :

Q0
τ (h1,h2,h3, z̄[j + 1:]) =ϕ̃y,τ,γτ (h1,h2,h3, z̄[j + 1:])

·
(
X̃τ (h1, s1)− b1

)
·
(
X̃τ (h2, s2)− b2

)
·
(
X̃τ ((h3|t3)j′ , s3)− b3

)
= 0 .

Therefore, the sum in this part is 0.

6.8.5 Case 5: j ∈ [3m+ 1, 3(m+ k)].

Let j′ = j − 3m ∈ [3k]. We can write Qjτ as

Qjτ (z̄) =
∑

h1,h2,h3∈Hm

h∈Hj′

ID ((h1,h2,h3,h) , z̄[:j]) ·Q0
τ (h1,h2,h3,h, z̄[j + 1:]) . (24)

We compute this sum in parts:

1. h1 > τ .

2. 0m < h1 = τ and h2 = h1 − 1 and h3 = h1 − 1.

3. 0m < h1 < τ and h2 = h1 − 1 and h3 = h1 − 1.

4. h1 = 0m or (0m < h1 ≤ τ and (h2 6= h1 − 1 or h3 6= h1 − 1)).

Part 1. We compute the part of the sum in (24) where h1 > τ :∑
h1,h2,h3∈Hm

h∈Hj′

ID ((h1,h2,h3,h) , z̄[:j]) ·Q0
τ (h1,h2,h3,h, z̄[j + 1:]) .

For h1 > τ , by the definition of Q0
τ :

Q0
τ (h1,h2,h3,h, z̄[j + 1:]) = 0

Therefore, the sum in this part is 0.

35

Part 2. We compute the part of the sum in (24) where 0m < h1 = τ , h2 = h3 = h1 − 1:∑
h∈Hj′

ID ((τ, τ − 1, τ − 1,h) , z̄[:j]) ·Q0
τ (τ, τ − 1, τ − 1,h, z̄[j + 1:]) .

Let s′1, s
′
2, s
′
3 ∈ Fk be such that (s′1, s

′
2, s
′
3) = (h, z̄[j + 1:]). By the definition of Q0

τ for h1 = τ :

Q0
τ (τ, τ − 1, τ − 1,h, z̄[j + 1:]) =ϕ̃y,τ,γτ (τ, τ − 1, τ − 1,h, z̄[j + 1:])

·
(
X̃τ

(
τ, s′1

)
− b1

)
·
(
X̃τ

(
τ − 1, s′2

)
− b2

)
·
(
X̃τ

(
τ − 1, s′3

)
− b3

)
.

By Claim 5.1, given γτ and γτ−1 we can efficiently compute the values:

X̃τ

(
τ, s′1

)
, X̃τ

(
τ − 1, s′2

)
, X̃τ

(
τ − 1, s′3

)
.

The circuit ϕ̃y,τ,γτ can be efficiently evaluated given γτ . Therefore, since this part contains |H|j′ <
poly(S) summands, we can efficiently compute the sum in this part.

Part 3. We compute the part of the sum in (24) where 0m < h1 < τ and h2 = h3 = h1 − 1.∑
0m<h1<τ

h∈Hj′

ID ((h1,h1 − 1,h1 − 1,h) , z̄[:j]) ·Q0
τ (h1,h1 − 1,h1 − 1,h, z̄[j + 1:]) .

By the definition of Q0
τ and C0

τ , for h1 < τ :

Q0
τ (((h1,h1 − 1,h1 − 1) |z̄)j) = C0

τ (((h1,h1 − 1,h1 − 1) |z̄)j) .

Therefore, by the definition of C̄j
′
τ :∑

0m<h1<τ

h∈Hj′

ID ((h1,h1 − 1,h1 − 1,h) , z̄[:j]) ·Q0
τ (h1,h1 − 1,h1 − 1,h, z̄[j + 1:]) = C̄j

′
τ (z̄) .

The value C̄j
′
τ (z̄) was computed in (20). Therefore, we can efficiently compute the sum in this part.

Part 4. We compute the part of the sum in (24) where h1 = 0m:

Qjτ (z̄) =
∑

h2,h3∈Hm

h∈Hj′

ID ((0m,h2,h3,h) , z̄[:j]) ·Q0
τ (0m,h2,h3,h, z̄[j + 1:]) .

Or, where 0m < h1 ≤ τ and (h2 6= h1 − 1 or h3 6= h1 − 1):∑
0m<h1≤τ

(h2 6=h1−1)∨(h3 6=h1−1)

h∈Hj′

ID ((h1,h2,h3,h) , z̄[:j]) ·Q0
τ (h1,h2,h3,h, z̄[j + 1:]) .

By Claim 4.7 in both cases ϕ̃y,τ,γτ (h1,h2,h3,h, z̄[j + 1:]) = 0. Therefore, by the definition of Q0
τ for

h1 ≤ τ and for (s′1, s
′
2, s
′
3) = (h, z̄[j + 1:]):

Q0
τ (h1,h2,h3,h, z̄[j + 1:]) =ϕ̃y,τ,γτ (h1,h2,h3,h, z̄[j + 1:])

·
(
X̃τ (h1, s

′
1)− b1

)
·
(
X̃τ (h2, s

′
2)− b2

)
·
(
X̃τ ((h3|t3)j′ , s

′
3)− b3

)
= 0 .

Therefore, the sum in this part is 0.

36

References

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. J. Cryptology, 30(4):989–1066,
2017.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991.

[BHK16] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive RAM and
batch NP delegation from any PIR. IACR Cryptology ePrint Archive, 2016:459, 2016.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and
batch NP verification from standard computational assumptions. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 474–482, 2017.

[BMW98] Ingrid Biehl, Bernd Meyer, and Susanne Wetzel. Ensuring the integrity of agent-based
computations by short proofs. In Mobile Agents, Second International Workshop, MA’98,
Stuttgart, Germany, September 1998, Proceedings, pages 183–194, 1998.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106, 2011.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
III, pages 93–122, 2016.

[DLN+00] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for NP ander spooky interactions. manuscript,
http://www.wisdom.weizmann.ac.il/\˜naor/PAPERS/spooky.pdf,
2000.

[DNR16] Cynthia Dwork, Moni Naor, and Guy N. Rothblum. Spooky interaction and its discon-
tents: Compilers for succinct two-message argument systems. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part III, pages 123–145, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 169–178, 2009.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, pages 75–92, 2013.

37

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time
and space overhead. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 124–135, 2018.

[KPY19] Yael Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC,
2019.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In
STOC, pages 565–574, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the
power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and pub-
licly verifiable non-interactive arguments. In Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part
II, pages 283–315, 2017.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography, Fifth Theory of Cryptography Confer-
ence, TCC 2008, New York, USA, March 19-21, 2008., pages 1–18, 2008.

38

	Introduction
	This Work

	Technical Overview
	The BFLS Construction
	The Incremental PCP Construction
	Updating the PCP.
	From PCP to Verifiable Computation.

	Definitions
	Incrementally Updatable PCP
	Incrementally Verifiable Computation

	PCP Construction
	Preliminaries
	The Constraints
	The Proof String

	Useful Claims About
	The Update Procedure
	Updating
	Updating A
	Updating
	Updating B
	Updating
	Updating C
	Updating
	Updating Q
	Case 1: j = 0.
	Case 2: j [m].
	Case 3: j [m+1,2m].
	Case 4: j [2m+1,3m].
	Case 5: j [3m+1,3(m+k)].

