31 research outputs found

    A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau)

    Get PDF
    Despite its assumed global nature, there are very few detailed stratigraphic records of the late Cenomanian to the early Turonian Oceanic Anoxic Event 2 from the Southern Hemisphere. A highly resolved record of environmental changes across the Cenomanian\u2013Turonian boundary interval is presented from Ocean Drilling Program Site 1138 on the central Kerguelen Plateau (southern Indian Ocean). The new data lead to three key observations. Firstly, detailed biostratigraphy and chemostratigraphy indicate that the record of Oceanic Anoxic Event 2 is not complete, with a hiatus spanning the onset of the event. A decrease in glauconite and highly weathered clays after the onset of Oceanic Anoxic Event 2 marks the end of the hiatus interval, which can be explained by a relative sea-level rise that increased sediment accommodation space on the Kerguelen Plateau margin. This change in depositional environment controlled the timing of the delayed peak in organic-matter burial during Oceanic Anoxic Event 2 at Site 1138 compared with other Oceanic Anoxic Event 2 locations worldwide. A second key observation is the presence of cyclic fluctuations in the quantity and composition of organic matter being buried on the central Kerguelen Plateau throughout the latter stages of Oceanic Anoxic Event 2 and the early Turonian. A close correspondence between organic matter, sedimentary elemental compositions and sediments recording sea-floor oxygenation suggests that the cycles were mainly productivity-driven phenomena. Available age-control points constrain the periodicity of the coupled changes in sedimentary parameters to ca 20 to 70 ka, suggesting a link between carbon burial and astronomically forced climatic variations (precession or obliquity) in the Southern Hemisphere mid-latitudes both during, and after, Oceanic Anoxic Event 2: fluctuations that were superimposed on the impact of global-scale processes. Finally, trace-metal data from the black-shale unit at Site 1138 provide the first evidence from outside of the proto-North Atlantic region for a global drawdown of seawater trace-metal (Mo) inventories during Oceanic Anoxic Event 2

    A model-model and data-model comparison for the early Eocene hydrological cycle

    Get PDF
    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and <i>P</i> − <i>E</i> distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. <br><br> We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO<sub>2</sub>, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO<sub>2</sub> level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (d<i>P</i>∕d<i>T</i>) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. <br><br> A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO<sub>2</sub> or by varying poorly constrained model parameter values, are most successful in simulating a match with geologic data. Further data from low-latitude regions and better constraints on early Eocene CO<sub>2</sub> are now required to discriminate between these model simulations given the large error bars on paleoprecipitation estimates. Given the clear differences between simulated precipitation distributions within the ensemble, our results suggest that paleohydrological data offer an independent means by which to evaluate model skill for warm climates

    CO<sub>2</sub> drawdown following the middle Miocene expansion of the Antarctic Ice Sheet

    Get PDF
    The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 Myr (million years) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the “greenhouse” of the early Eocene to the “icehouse” of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive δ13C excursion known as carbon maximum 6 (“CM6”), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the δ13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.</p
    corecore