

Naafs, B. D. A., Castro, J. M., de Gea, G. A., Quijano, M. L. L., Schmidt, D. N., & Pancost, R. D. (2016). Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nature Geoscience, 9(2), 135-139. DOI: 10.1038/ngeo2627

Peer reviewed version

Link to published version (if available): 10.1038/ngeo2627

Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

1	Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic
2	Event 1a
3	
4	B.D.A. Naafs ^{1*} , J.M. Castro ² , G.A. De Gea ² , M.L. Quijano ³ , D.N. Schmidt ⁴ , and R.D.
5	Pancost ¹
6	
7	¹ Organic Geochemistry Unit, School of Chemistry and Cabot Institute, University of
8	Bristol, BS8 1TS, UK
9	² Dept. Geología, CEACTierra, University of Jaén, E-23071, Spain
10	³ Dept. Química Inorgánica y Orgánica, CEACTierra, University of Jaén, E-23071,
11	Spain
12	⁴ School of Earth Sciences and Cabot Institute, University of Bristol, BS8 1RJ, UK
13	
14	*Corresponding author. Tel. +44-(0)117-9546395. E-mail address:
15	david.naafs@bristol.ac.uk
16	
17	During the Aptian Oceanic Anoxic Event 1a, about 120 million years ago, black
18	shales were deposited in all the major ocean basins ¹ . The event was also
19	associated with elevated sea surface temperatures ^{2,3} and a calcification crisis in
20	calcareous nannoplankton ⁴ . These environmental changes have been attributed
21	to variations in atmospheric CO_2 concentrations ^{2,3,5,6} , but the evolution of the
22	carbon cycle during this event is poorly constrained. Here we present records of
23	atmospheric CO ₂ concentrations across Ocean Anoxic Event 1a derived from
24	bulk and compound specific $\delta^{13}C$ from marine rock outcrops in southern Spain
25	and Tunisia. We find that CO ₂ concentrations doubled in two steps during the

26 ocean anoxic event and remained above background values for approximately 27 1.5 to 2 million years before declining. The rise of CO₂ concentrations occurred over several tens to hundreds of thousand years, and thus was unlikely to have 28 29 resulted in any prolonged surface ocean acidification, suggesting that CO₂ 30 emissions were not the primary cause of the nannoplankton calcification crisis. 31 We find that the period of elevated CO₂ concentrations coincides with a shift in the oceanic osmium-isotope inventory 7 associated with emplacement of the 32 33 Ontong Java Plateau flood basalts, and conclude that sustained volcanic 34 outgassing was the primary source of carbon dioxide during Ocean Anoxic Event 35 1a.

36

37 Oceanic Anoxic Events (OAEs) represent dramatic changes in the climatic and 38 palaeoceanographic state of the planet. Of these, OAE 1a during the Aptian Stage of 39 the Early Cretaceous is one of the largest with black shale deposition in all major ocean basins¹. Multi-proxy sea surface temperature (SST) estimates from the boreal 40 realm and Pacific Ocean suggest that OAE 1a was accompanied by a \sim 4-8 $^\circ C$ 41 increase in SSTs, assumed to be driven by an increase in $pCO_2^{2,3}$. In addition, OAE 1a 42 is concomitant with the calcification crisis of the nannoconids, the most ubiquitous 43 planktic calcifiers during the Early Cretaceous⁴. Their near disappearance is one of 44 the most significant events in the nannoplankton fossil record⁸. Their demise as well 45 46 as malformation and secretion of dwarfed coccoliths and a reduction in pelagic 47 carbonate fluxes have been suggested to represent a (calcification) response to widespread surface ocean acidification due to an increase in pCO_2^{5} . However the 48 source of excess CO₂, potentially methane release from gas hydrates and/or CO₂ from 49 (submarine) volcanic outgassing, the evolution of pCO_2 across OAE 1a, and whether 50

51 this change in pCO_2 is the driving factor for the calcification crisis remains controversial^{5-7,9-12}. Most importantly, paleo- pCO_2 proxies have yet to confirm 52 whether changes in pCO_2 are indeed associated with these biological and 53 54 environmental perturbations across OAE 1a and weather surface ocean acidification, defined here as a coupled decline in (surface) ocean pH and Ω^{13} due to rapid input of 55 56 carbon into the earth system, has happened at all. Determining the relative timing of 57 events is crucial in identifying causal relationships and can provide crucial constraints for the source of pCO_2 , but has been challenging as most records originate from slow 58 59 accumulating deep-sea sediments.

60 To accurately determine the relative timing, we provide a high-resolution record of pCO_2 across OAE 1a from an expanded section in Southern Spain (Cau, Fig. 61 62 1). OAE 1a is defined as the interval covering segments C3-C6 and has a thickness of ~ 40 m at Cau, resulting in average sedimentation rate of 2.5 – 4 cm/ka, assuming an 63 duration of 1-1.3 Myr^{14,15}. These sedimentation rates are one order of magnitude 64 65 higher than those at the OAE 1a reference section at Cismon, but similar to those at other expanded OAE 1a sections^{16,17}. The hemipelagic sediments consisting of marls, 66 67 marly limestones, and black marls (Fig. 2) that contain a rich and well-preserved fossil association, allowing for a detailed integrated bio- and chemostratigraphy^{18,19}. 68 69 Importantly, the organic matter at Cau is predominantly of marine origin and thermally immature²⁰. The nannoconid crisis occurs around 42.5 m in the 70 71 Globigerinelloides blowi planktonic foraminifera zone just before the beginning of the C3 segment and NCIE^{18,19}, identical to other sections^{4,16}. 72

To reconstruct changes in pCO_2 we use paired bulk carbonate ($\delta^{13}C_{carb}$) and organic carbon stable carbon isotopes (either bulk organic, $\delta^{13}C_{TOC}$, or based on algal derived lipids such as pristane, $\delta^{13}C_{alg}$). The difference between these two records,

 $\Delta^{13}C$ (for example, $\Delta^{13}C_{bulk} = \delta^{13}C_{carb} - \delta^{13}C_{TOC}$), can be used to reconstruct changes 76 in atmospheric CO_2^{21} and has been applied to reconstruct changes in atmospheric 77 pCO_2 throughout Earth's history, including the OAEs²². The method relies on the 78 understanding that high pCO_2 , and hence dissolved CO_2 concentrations in the surface 79 ocean, cause greater discrimination against ¹³C during algal photosynthesis, leading to 80 more depleted $\delta^{13}C$ values for marine organic matter ($\delta^{13}C_{TOC}$ and $\delta^{13}C_{alg}$) compared 81 to carbonates ($\delta^{13}C_{carb}$). Here, we generate a high-resolution $\Delta^{13}C_{bulk}$ record using 82 $\delta^{13}C_{TOC}$ determined for 114 samples through a 90-m sequence (Fig. 3a). 83

The $\delta^{13}C_{carb}$ and $\delta^{13}C_{TOC}$ profiles display all eight carbon isotope segments 84 previously identified to be global²³ that are placed in a tight framework of 85 biostratigraphy^{18,19} with the characteristic negative and subsequent positive excursions 86 87 related to the input of depleted carbon to the ocean-atmosphere and subsequent 88 enhanced carbon burial under global greenhouse conditions (Fig. 2). The absolute values as well as the overall shape of the $\delta^{13}C_{carb}$ curve, including the magnitude of 89 the positive and negative excursion, are similar to those recorded around the globe 90 (Fig. S1 and S2). 91

92 Biomarkers such as short-chain *n*-alkanes (C_{17} and C_{18}) and pristane and 93 phytane, the latter two derived from phytyl side chains of the chlorophylls of algae 94 and cyanobacteria, can serve as proxies for the isotopic composition of phytoplankton^{10,24}. A lower-resolution record of compound-specific $\delta^{13}C$ from Cau 95 96 was generated using these biomarkers (Fig. 2b), which in our samples predominantly derive from algae ($\delta^{13}C_{alg}$). $\delta^{13}C_{alg}$ was determined for a total of 19 samples and range 97 from -24 to -34.5 ‰ (or -20 to -30.5 ‰ when corrected to bulk biomass), with the 98 99 lowest values during the later stage of isotope segments C3 and C4 (Fig. 2b). The shapes as well as absolute values of $\delta^{13}C_{alg}$ are very similar to $\delta^{13}C_{TOC}$, indicating that 100

101 $\delta^{13}C_{TOC}$ is not significantly influenced by changes in the composition of bulk organic 102 matter via either changes in source input or diagenesis. This suggests that the majority 103 of organic matter at Cau is of marine (algal) origin, which is consistent with the 104 overall biomarker assemblage²⁰.

The $\delta^{13}C_{alg}$ values are also similar to those reported from other (low-105 resolution) records across OAE 1a. Taken together this demonstrates that the $\delta^{13}C_{alg}$ 106 we report from Cau are typical for OAE 1a. The similarity of $\delta^{13}C_{alg}$ compared to 107 108 other OAE 1a records together with the absence of major changes in total organic 109 carbon content (Fig. S4) and biomarker distribution across OAE 1a suggest that 110 changes in algal composition (Fig. S3), physiology, or nutrient contents of the waters 111 are unlikely to have had a significantly effect, mitigating concerns associated with growth rate impacts on δ^{13} C records. The negative shift in δ^{13} C_{TOC} values, similar to 112 that seen in $\delta^{13}C_{alg}$, and resulting positive excursion in the $\Delta^{13}C_{bulk}$ record between 55 113 and 90 m therefore predominantly indicates a greater discrimination against ¹³C 114 115 during algal photosynthesis due to elevated pCO_2 levels (Fig. 3a).

Using $\delta^{13}C_{alg}$ we then tentatively quantified pCO_2 by converting $\Delta^{13}C$ values 116 into ε_{p} (carbon isotope discrimination during photosynthesis) and using modern 117 118 relationships between ε_{n} and {CO₂(aq)}. The absolute CO₂ values are calculated using 119 a number of assumptions for palaeoproductivity, sea surface temperature, and 120 equilibrium CO₂ exchange between ocean and atmosphere and should be considered 121 as estimates. Pre-OAE 1a values are estimated between 800 and 1200 ppmv (Fig. 3b), 122 entirely consistent with low-resolution multi-proxy estimates of (Early) Cretaceous background $pCO_2^{13,25}$. During OAE 1a, specifically the latter part of segment C3-C4, 123 pCO_2 doubled to values between 1400 and 2800 ppmv. We support the minimum 124 pCO_2 values during segment C3 and maximum pCO_2 values during segment C4 by 125

126 providing low-resolution independent pCO_2 estimates from the Djebel Serdj section from Tunisia²⁶ (Fig. 3b). The values, which were obtained using compound-specific 127 $\delta^{13}C_{alg}$ and the exact same assumptions as used to calculate pCO₂ at Cau, range 128 129 between 1100 and 2000 ppmv with the highest values during C4. The similarity in 130 absolute pCO_2 values between the two records demonstrates that the high-resolution 131 pCO_2 record from Cau represents a global signal and is not significantly biased by local factors. It is important to note that due to the non-linear nature of the $\varepsilon_{\rm p}$ and 132 133 $\{CO_2(aq)\}\$ -relationship the higher pCO_2 values could be underestimates.

134 The pCO_2 record for the first time depicts the often-inferred increase and decrease in pCO_2 across segments later part of C3 to mid-C7 (Fig. 3a-b). As segments 135 136 C3-C6 (OAE 1a) are estimated to represent around 1.1 Myrs and segment C7 an additional 1.6 Myrs¹⁵, the period of elevated "super greenhouse" CO₂ levels, likely 137 lasted around 1.5 to 2 Myrs. The continuously high pCO₂ values during segments C4-138 139 C6 suggest constant input of carbon into the ocean-atmosphere system, almost 140 balanced by extensive organic matter burial in black shales around the world as 141 indicated by the positive $\delta^{13}C_{carb}$ excursion.

142 The timing of the pCO_2 increase that starts in the middle of segment C3 provides critical constraints on the source of excess CO₂ during OAE 1a. Records 143 144 from the Pacific and Tethys realms demonstrate that during OAE 1a the global oceanic Osmium (Os) isotope composition was exceptionally unradiogenic (mantle-145 like), interpreted to reflect the main phase of eruption of the Ontong Java plateau^{7,27}. 146 147 The major shift in Os-isotopes and hence eruption phase occurs well after the onset of 148 the nannoconid crisis during the middle of segment C3, at the same time as the onset of $\Delta^{13}C_{\text{bulk}}/p\text{CO}_2$ increase at Cau (Fig. 3c). The simultaneous shifts in Os-isotopes and 149

150 pCO_2 provides compelling evidence that the source of excess CO_2 is derived from 151 volcanic outgassing related to the emplacement of the Ontong Java Plateau.

In addition, the initial two-step rise in $\Delta^{13}C_{bulk}/pCO_2$ during segment C3-C4 spans roughly 10 meters in our section from 55 to 65 m (Fig. 3). Estimates from other expanded sections suggest a duration of 100-300 kyr for C3^{16,17}, resulting in average sedimentation rates of 5 to 15 cm/kyr for this segment. Combined with the assumed duration of segment C4 of 200-280 kyr¹⁵, the CO₂ doubling took at least 100 kyr and very likely more than 300 kyr.

158 Previous studies argued that the nanoconid crisis was caused by widespread 159 and sustained surface ocean acidification due to numerous pulses of CO₂ and 160 methane, with the first pulse coinciding with the onset of the nannoconid crisis during carbon isotope segment $C2^5$. However, our high-resolution pCO_2 record challenges 161 this. Our record indicates a gradual and sustained, two-step increase in pCO_2 , likely 162 163 volcanic sourced, during the latter part of segment C3 and C4 that took place over at 164 least 100 kyr and occurred well after the onset of the nannoconid crisis. Such a slow 165 (> 10 kyr) CO₂ release is buffered in the ocean by dissolution of carbonates in deep-166 sea sediments combined with silicate rock weathering on land and, assuming no major spatial shift in carbonate burial, would have prevented a coupled decline in pH and 167 $\Omega^{28,29}$. Due to current uncertainties in determining absolute ages or durations in the 168 169 Early Cretaceous we cannot completely rule-out very brief episodes of surface ocean 170 acidification during the latter part of segment C3 and C4 when pCO_2 increases. 171 However, the significant lag (~ 10 m, representing at least 60 kyr during C3) between 172 the onset of the nannoconid crisis and onset of CO₂ increase and shift in Os-isotopes (Fig. 3) clearly demonstrates that CO_2 -induced surface ocean acidification could not 173 174 have caused the nannoconid crisis.

175		In summary, our records demonstrate that OAE 1a was associated with a			
176	gradual, two-step increase in pCO_2 to values roughly double that of pre-OAE 1a				
177	values. The similarity in timing between changes in pCO_2 and oceanic Os-isotope				
178	inventory suggests that volcanic outgassing associated with the emplacement of the				
179	Ontong Java Plateau was the dominant source of CO2. The prolonged duration of				
180	pCO_2 increase, and by extension the total amount of released carbon, indicates that				
181	methane release from gas hydrates was not likely a major source of pCO_2 during OAE				
182	1a.				
183					
184	Refer	ences			
185 186	1	Jenkyns, H. C. Geochemistry of oceanic anoxic events. <i>Geochem. Geophy. Geosy.</i> 11 , Q03004 (2010).			
187 188 189	2	Mutterlose, J., Bottini, C., Schouten, S. & Sinninghe Damsté, J. S. High sea- surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm. <i>Geology</i> 42 , 439-442 (2014).			
190 191 192	3	Ando, A., Kaiho, K., Kawahata, H. & Kakegawa, T. Timing and magnitude of early Aptian extreme warming: Unraveling primary δ^{18} O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central			
193 194		Pacific Ocean. <i>Palaeogeogr., Palaeoclimatol., Palaeoecol.</i> 260 , 463-476 (2008).			
195 196	4	Erba, E. Nannofossils and Superplumes: The Early Aptian "Nannoconid Crisis". <i>Paleoceanography</i> 9 , 483-501 (1994).			
197 198	5	Erba, E., Bottini, C., Weissert, H. J. & Keller, C. E. Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic			
199 200	6	Anoxic Event Ia. Science 329 , 428-432 (2010). Méhay, S. <i>et al.</i> A volcanic CO_2 pulse triggered the Cretaceous Oceanic			
201 202 203	7	Anoxic Event 1a and a biocalcification crisis. <i>Geology</i> 37, 819-822 (2009). Bottini, C., Cohen, A. S., Erba, E., Jenkyns, H. C. & Coe, A. L. Osmium- isotope evidence for volcanism, weathering, and ocean mixing during the early			
204 205 206	8	Aptian OAE 1a. <i>Geology</i> 40 , 583-586 (2012). Kump, L. R., Bralower, T. J. & Ridgwell, A. Ocean acidification in deep time.			
200 207 208	9	Gibbs, S. J., Robinson, S. A., Bown, P. R., Jones, T. D. & Henderiks, J. Commont on "Calcaroous Nannonlankton Response to Surface Water			
208 209 210 211	10	Acidification Around Oceanic Anoxic Event 1a". <i>Science</i> 332 , 175 (2011). Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N. & Weissert, H. Absence of major vegetation and palaeoatmospheric pCO ₂ changes associated with accertic energies event 1a (Teally Artice, SE Errope). <i>Exett Plant</i> , Se Lett			
212 213 214	11	 van Breugel, Y. <i>et al.</i> Synchronous negative carbon isotope shifts in marine 			
215		and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event			

216		1a: Evidence for the release of ${}^{13}C$ -depleted carbon into the atmosphere.
217		Paleoceanography 22, PA1210 (2007).
218	12	Beerling, D. J., Lomas, M. R. & Gröcke, D. R. On the nature of methane gas-
219		hydrate dissociation during the Toarcian and Aptian Oceanic anoxic events.
220		<i>Am. J. Sci.</i> 302 , 28-49 (2002).
221	13	Hönisch, B. et al. The Geological Record of Ocean Acidification. Science 335,
222		1058-1063 (2012).
223	14	Li, YX. et al. Toward an orbital chronology for the early Aptian Oceanic
224		Anoxic Event (OAE1a, ~ 120 Ma). <i>Earth Plant. Sc. Lett.</i> 271 , 88-100 (2008).
225	15	Malinverno, A., Erba, E. & Herbert, T. D. Orbital tuning as an inverse
226		problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level)
227		in the Cismon APTICORE. <i>Paleoceanography</i> 25, PA2203 (2010).
228	16	Kuhnt, W., Holbourn, A. & Moullade, M. Transient global cooling at the onset
229		of early Aptian oceanic anoxic event (OAE) 1a. Geology 39 , 323-326 (2011).
230	17	Lorenzen, J. et al. A new sediment core from the Bedoulian (Lower Aptian)
231		stratotype at Roquefort-La Bédoule, SE France. Cretaceous Res. 39, 6-16
232		(2013).
233	18	de Gea, G. A., Castro, J. M., Aguado, R., Ruiz-Ortiz, P. A. & Company, M.
234		Lower Aptian carbon isotope stratigraphy from a distal carbonate shelf setting:
235		the Cau section, Prebetic zone, SE Spain. Palaeogeogr., Palaeoclimatol.,
236		Palaeoecol. 200, 207-219 (2003).
237	19	Aguado, R., Castro, J. M., Company, M. & Alfonso De Gea, G. Aptian bio-
238		events—an integrated biostratigraphic analysis of the Almadich Formation,
239		Inner Prebetic Domain, SE Spain. Cretaceous Res. 20, 663-683 (1999).
240	20	Quijano, M. L. et al. Organic geochemistry, stable isotopes, and facies
241		analysis of the Early Aptian OAE-New records from Spain (Western Tethys).
242		Palaeogeogr., Palaeoclimatol., Palaeoecol. 365-366, 276-293 (2012).
243	21	Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions:
244		carbonates and organic matter. Chem. Geol. 161, 181-198 (1999).
245	22	Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C. & Pearce, M. A. Black
246		shale deposition, atmospheric CO ₂ drawdown, and cooling during the
247		Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26, PA3201
248		(2011).
249	23	Menegatti, A. P. <i>et al.</i> High-Resolution δ^{13} C Stratigraphy Through the Early
250		Aptian "Livello Selli" of the Alpine Tethys. <i>Paleoceanography</i> 13 , 530-545
251		(1998).
252	24	Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R. D. & Schouten, S.
253		The carbon isotopic response of algae, (cyano)bacteria, archaea and higher
254		plants to the late Cenomanian perturbation of the global carbon cycle: Insights
255		from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367).
256		Org. Geochem. 39 , 1703-1718 (2008).
257	25	Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth
258		system sensitivity to CO ₂ during the Cretaceous and Cenozoic. <i>Geobiology</i> 10 ,
259		298-310 (2012).
260	26	Heldt, M., Bachmann, M. & Lehmann, J. Microfacies, biostratigraphy, and
261		geochemistry of the hemipelagic Barremian-Aptian in north-central Tunisia:
262		Influence of the OAE 1a on the southern Tethys margin. Palaeogeogr.,
263		Palaeoclimatol., Palaeoecol. 261, 246-260 (2008).
264	27	Tejada, M. L. G. et al. Ontong Java Plateau eruption as a trigger for the early
265		Aptian oceanic anoxic event. Geology 37, 855-858 (2009).

266 267 268

- 28 Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. *Nature Geosci.* **3**, 196-200 (2010).
- 269 29 Uchikawa, J. & Zeebe, R. E. Examining possible effects of seawater pH
 270 decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal
 271 Maximum. *Paleoceanography* 25, PA2216 (2010).
- 272

273 Acknowledgements

274 BDAN received funding through a Rubicon fellowship, awarded by the Netherlands 275 Organisation for Scientific Research (NWO). Additional funding came from the 276 advanced ERC grant "The greenhouse earth system" (T-GRES). JMC and MLQ were 277 funded by University of Jaén fellowships, DNS was funded by a Royal Society URF. 278 RDP and DNS acknowledge the Royal Society Wolfson Research Merit Award. We 279 wish to thank the University of Jaén (CICT) for the use of analytical facilities and 280 NERC for partial funding of the mass spectrometry facilities at the University of 281 Bristol (contract no. R8/H10/63; www.lsmsf.co.uk). Matthias Heldt is thanked for 282 providing the samples from Djebel Serdj. This work is a contribution of the research 283 project CGL2009-10329 and CGL2014-55274-P (Spanish Ministry of Science and 284 Technology), "Episodios de Cambio Climático Global" (Instituto de Estudios 285 Giennenses) and RNM-200 (Junta de Andalucía).

286

287 Author contributions

BDAN, DNS, and RDP designed the study. JMC and GAD generated the stratigraphy, gathered the samples in the field, and prepared the samples for bulk stable isotope analyses. MLQ and JMC conducted the biomarker extraction and characterization of samples from Cau. BDAN preformed the biomarker extraction of samples from Djebel Serdj, measured all compound specific isotope data for Cau and Djebel Serdj, and wrote the manuscript with contribution from all authors.

294

295 Competing financial interested

- 296 We declare no competing financial interests.
- 297

298 Figure Legends

299 Figure 1; Study area

Palaeogeographic reconstruction of the Tethys region during the Aptian. Theapproximated locations of Cau and Djebel Serdj, as well as other key-OAE 1a

302 sections are indicated by red and black stars, respectively. Figure modified from R.
303 Blakey, <u>http://cpgeosystems.com/euromaps.html</u>.

304

305 Figure 2; Carbon isotope records from Cau across OAE 1a

a) bulk carbonate stable carbon isotopes (light blue circles) and b) total organic matter stable carbon isotopes (dark blue circles) together with compound specific stable carbon isotopes of pristane (green circles), phytane (red diamonds), C₁₇ (orange triangles) and C₁₈ *n*-alkanes (brown reversed triangles). Error bars on compound specific stable carbon isotope data reflect 1 σ of replicates. Isotope segments according to Menegatti et al.²³. $\delta^{13}C_{alg}$ is corrected to bulk biomass by adding 4 ‰.

312

313 Figure 3; Estimates of atmospheric CO₂ across OAE 1a

a) High-resolution of $\Delta^{13}C_{\text{bulk}}$ at Cau together with b) pCO₂ estimate based on $\delta^{13}C_{\text{alg}}$ 314 from Cau (orange diamonds) and Diebel Serdi (purple circles), and c) ¹⁸⁷Os/¹⁸⁸Os 315 record from Cismon⁷. The duration of the nannoconid crisis at Cau¹⁹ and Cismon⁵ is 316 indicated by green bars. Turquoise shading in a) represent uncertainty in $\Delta^{13}C_{\text{bulk}}$, 317 318 orange shading in b) represents the uncertainty in pCO_2 -estimates related to uncertainty in $\delta^{13}C_{carb}$ and growth rate and cell geometry (the *b*-value), while light-319 yellow shading is the superimposed spread in the different $\delta^{13}C_{alg}$ for a specific 320 321 sample.

322 Material and methods

323 Data collection

324 The Cau section was completed re-logged and remeasured. Bulk C-isotope analyses of the carbonate fraction ($\delta^{13}C_{carb}$) were carried out at the Stable Isotope Laboratory of 325 326 the University of Michigan, using a Finnigan MAT Kiel IV preparation device 327 coupled directly to the inlet of a Finnigan MAT 253 triple collector isotope ratio mass spectrometer. The international carbonate standard NBS-19 was used to calibrate to 328 329 V-PDB, with an average precision of 0.15 %. The C-isotope analyses of the total organic fraction ($\delta^{13}C_{TOC}$) were performed at the Stable Isotope Laboratory (SIDI) of 330 331 the Universidad Autónoma of Madrid. Samples were treated with 3% HCL for 24 332 hours to remove carbonates and then analysed with an Carlo Erba 1108 elemental 333 analyser coupled to a IRMS VG Isochrom in continuous flow mode. The results were 334 calibrated to the VPDB standard, with a precision better than 0.1 %.

Samples for compound specific C-isotopes ($\delta^{13}C_{alg}$) from Cau were extracted 335 at the University of Jaén. Around 10 grams of grounded bulk sample was extracted 336 337 using Dionex automated solvent extraction (ASE) and a mixture of dichloromethane 338 (DCM) and methanol (MeOH) (8:2). The ASE program consisted of three 5 min 339 cycles at 100 °C and 10 atm. The five samples from Djebel Serdj (Tunesia) were 340 extracted at the University of Bristol using soxhlet apparatus. Between 30 and 40 341 grams of grounded bulk sample was extracted with a mixture of dichloromethane 342 (DCM) and methanol (MeOH) (2:1) for 24 hrs. The total lipid extracts of samples 343 from both locations were concentrated and separated into three fractions using silica 344 open column chromatography. Successive elution with 3 ml of hexane, 4 ml 345 hexane/DCM (9:1 v/v) and 4 ml of MeOH resulted in saturated hydrocarbon, aromatic and polar fractions, respectively. Compound specific δ^{13} C values of the saturated 346 hydrocarbons were determined using an Isoprime 100 GC-combustion-isotope ratio 347 MS (GC-C-IRMS) system at the University of Bristol. Samples were measured in 348 duplicate and δ^{13} C values were converted to Vienna Peedee Belemnite (VPDB) by 349 bracketing with an in-house gas (CO₂) of known δ^{13} C value. Instrument stability was 350 monitored by regular analysis of an in-house fatty acid methyl ester standard mixture; 351 352 long-term precision is ± 0.3 ‰. Injection volume was 2 µl on to a Zebron-I non-polar 353 column (50 m x 0.32 mm i.d., 0.10 um film thickness). The GC oven program was: 70 354 °C (1 min hold), to 130 °C at 20 °C/min, then to 300 °C at 4 °C/min, and a final hold for 25 minutes at 300 °C. Samples were automatically integrated using the 355 356 IonVantage software package.

357

358 *p*CO₂ calculations using compound specific $\delta^{13}C_{alg}$

Popp et al.^{30,31} demonstrated that for several species of marine phytoplankton, and assuming that CO_2 (aq) enters the cell via diffusion only, which is likely during the high CO_2 world of the Cretaceous³², the isotopic effect associated with the photosynthetic fixation of carbon (ε_p) depends on the concentration of CO_2 (aq), growth rate, and cell geometry.

364

(1)
$$\varepsilon_p = \varepsilon_f - \frac{b}{[CO_2(aq)]}$$

365

With *b* being the combined species-specific factors that reflect physiological factors, including growth rate and cell geometry, and $\varepsilon_{\rm f}$ being the maximum isotopic fractionation associated with the photosynthetic fixation of carbon, which is 25 ‰ for algae³³. 370 Assuming surface waters were in equilibrium with the atmosphere, 371 atmospheric pCO_2 can calculated using Henry's law:

372

(2)
$$pCO_2(ppmv) = \frac{[CO_2(aq)]}{K_o}$$

373

374 With K_o, the solubility constant, depending on temperature and salinity.

375

(3) ln K_o (moles/l/atm)
= A₁ + A₂
$$\frac{100}{T}$$
 + A₃ ln $\frac{T}{100}$ + S $\left[B_1 + B_2 \frac{T}{100} + B_3 \left(\frac{T}{100}\right)^2\right]$

376

377 With T = temperature (Kelvin), S = salinity (‰), A₁=-58.0931, A₂ = 90.5069, A₃ = 378 22.2940, B₁ = 0.027766, B₂ = -0.025888, B₃ = 0.0050578³⁴

379

Based on this model, a large number of studies have used bulk organic matter ($\delta^{13}C_{TOC}$) and compound specific $\delta^{13}C$ values to calculate ε_p and/or pCO_2 throughout geological time³⁵⁻³⁹, including the Cretaceous and the OAEs^{6,10,22,24,40,41}.

Here we calculated pCO_2 using $\delta^{13}C_{alg}$ based on four different marine biomarker lipids (C₁₇ and C₁₈ *n*-alkanes and pristane and phytane) to generate a high resolution record from Cau and a low-resolution at Djebel Serdj. Biomarkers such as pristane and phytane, derived from phytol side chains of the chlorophylls of algae and cyanobacteria, are robust proxies for the isotopic composition of phytoplankton^{10,42}.

388 ϵ_p depends on the isotopic difference between dissolved (aq) CO₂ (δ_d) and 389 primary photosynthate (δ_p)⁴⁰.

390

(4)
$$\varepsilon_p = 10^3 \left[\frac{\delta_d + 1000}{\delta_p + 1000} - 1 \right]$$

391

We calculated the isotopic composition of primary photosynthate (δ_p) using the compound-specific isotopic composition $(\delta^{13}C_{alg})$ and taking into the isotopic offset between biomarker lipids and biomass $(\Delta\delta)$, which is assumed to be 4 ‰ for pristane and phytane^{24,41-43}. In our samples $\delta^{13}C$ values of the short-chain *n*-alkanes are very similar to those of pristane and phytane (average offset 0.4 ‰), in-line with findings from other OAEs⁴⁴, and we therefore assumed $\Delta\delta$ to be 4 ‰ for all four compounds.

(5)
$$\delta_p = \delta^{13} C_{TOC} = \delta^{13} C_{alg} + \Delta \delta = \delta^{13} C_{alg} + 4 \%$$

399

400 The isotopic composition of dissolved CO_2 (δ_d) was calculated using the isotopic 401 composition of bulk carbonate ($\delta^{13}C_{carb}$), the calcite-bicarbonate enrichment of 1 $\%^{45}$ 402 and the temperature dependent carbon isotopic fractionation of dissolved CO_2 with 403 respect to HCO_3^- ($\epsilon_{b(a)}$)⁴⁶.

404

(6)
$$\delta_d = \delta^{13} C_{carb} - 1 + \varepsilon_{b(a)}$$

405

(7)
$$\varepsilon_{b(a)} = 24.12 - \frac{9866}{T}$$

406

407 Uncertainties in *p*CO₂ estimates

408 The absolute CO_2 values are calculated using a number of assumptions for 409 palaeoproductivity, sea surface temperature, and equilibrium CO_2 exchange between 410 ocean and atmosphere and should be considered as estimates. Below we discuss these 411 assumptions and their impact on the absolute pCO_2 estimates. Importantly our main 412 conclusions depend on the timing of changes in pCO_2 and are valid independent of the 413 absolute CO_2 estimates or magnitude of change.

414 415

Fidelity of the bulk $\delta^{13}C_{carb}$

The first assumption is that bulk $\delta^{13}C_{carb}$ at Cau reflects the isotopic composition of 416 417 dissolved (aq) CO₂ (δ_d), which directly impacts ε_p (see eq. 4 and 6). First, the δ^{13} C composition of carbonate rocks is much more resistant to chemical overprinting than 418 419 δ^{18} O, such that even clearly diagenetically altered and dolomitized carbonates appear to preserve their original δ^{13} C composition⁴⁷, including OAE 1a sections⁴⁸. In addition, nannofossil-dominated bulk carbonate δ^{13} C is a reliable recorder of δ^{13} C_{DIC} in pre-420 421 Cenozoic sediments⁴⁹ and $\delta^{13}C_{carb}$ is well-suited for global correlation during OAEs³. 422 As a result the shape of the $\delta^{13}C_{carb}$ curves and magnitude of the positive and negative 423 carbon isotope excursion across OAE 1a is similar across the globe (and in a range of 424 depositional settings). In fact because black shale deposition is asynchronous, most 425 authors use δ^{13} C chemostratigraphy and the C-isotope segments defined by Menegatti et al.²³ to correlate OAE 1a records across the globe^{1,14,15,48,50}. Published δ^{13} C_{carb} 426 427 records may appear different in shape and magnitude but this apparent difference 428 429 between sections is to a large extent due to visual comparison of expanded to 430 condensed sections.

To demonstrate that our $\delta^{13}C_{carb}$ record from Cau is similar in shape and 431 magnitude of excursions to other records, we compare the record from Cau to the 432 $\delta^{13} \tilde{C}_{carb}$ of a similarly expanded section from southeast France¹⁶ (Fig. S1). The reason 433 for choosing this record is that it is one of the few other expanded OAE 1a sections. 434 We subsequently tuned the $\delta^{13}C_{carb}$ from SE France record to the one from Cau other 435 using four tie-points. Three are based on biostratigraphy and one on the boundary of 436 437 the C4/C5-isotope segment. Figure S2 clearly demonstrates the similarity in shape and magnitude of excursion of the two $\delta^{13}C_{carb}$ curves. The similarity between the two $\delta^{13}C_{carb}$ curves, located around 1000 km apart, suggests that the $\delta^{13}C_{carb}$ record from 438 439 Cau is not significantly influenced by diagenesis or other secondary effects but 440 reflects a $\delta^{13}C_{DIC}$ signal and can be used to calculate δ_d . Even so, we assume a 0.5 % 441 uncertainty in this in our uncertainty estimates (see further below). 442

443 444

Changes in algal composition and physiology

Changes in the algal composition or physiology can affect $\delta^{13}C_{alg}$ and $\delta^{13}C_{TOC}$ and 445 446 hence ultimately our pCO_2 estimates. To assess whether these factors changed across 447 OAE 1a at Cau, we determined the relative C_{27} - C_{30} aaaR sterane distribution in all 448 samples. Steranes are derived from algal-derived steroids and sterols, such that their 449 relative distribution in the geological record is often used to infer changes in algal composition^{51,52}. In addition, the sterol, and hence sterane, composition can be 450 451 influenced by environmental factors such as light intensity, temperature, and growth stage⁵³. 452

453 Our results show that the sterane distribution varied little across OAE 1a and 454 changes do not coincide with major changes in δ^{13} C (Fig. S3). This provides strong 455 evidence against significant changes in algal composition and/or environmental 456 factors at Cau during OAE 1a influencing δ^{13} C. This is in-line with the lack of a 457 temperature change in the low-latitudes during OAE 1a as indicated by our TEX₈₆ estimates from Site 398, as well as the minimal change in TOC content (Fig. S4). Taken together, changes in algal composition and/or variations in physiology due to changing environmental factors are unlikely to have had a significantly effect. Although more tentative, the lack of any change in algal assemblage suggests that there were no dramatic changes in the nutrient contents of the waters, mitigating concerns associated with growth rate impacts on δ^{13} C records.

464 465

Comparison to published records of $\delta^{I3}C_{alg}$ and εp

The $\delta^{13}C_{alg}$ from Cau (as well as Djebel Serdj, Fig. S8) are similar to those reported 466 from other (low-resolution) sections across OAE 1a. Van Breugel et al.¹¹ provide δ^{13} C 467 of pristane across part of OAE 1a at Cismon. Their values range between -28 and -35 468 ‰, similar to the values we measured at Cau (-29 to -34.5 ‰ for pristane) and low-469 470 resolution record of Djebel Serdj (-29.2 to -32.6 % for pristane). For the last \pm 50 Myr, numerous biomarker-based pCO₂ records are based on δ^{13} C of alkenones^{35,37}. 471 Although alkenones are generally not found in Cretaceous sediments, the first 472 473 occurrence of alkenones actually is in the extremely organic rich OAE 1a section at Shatsky Rise (ODP Site 1213)⁵⁴. The isotopic composition of these alkenones was 474 determined in one sample ($\sim -32 \text{ }\%$)⁵⁵, similar to the minimum values we determined, 475 and again demonstrate that the $\delta^{13}C_{alg}$ we report are typical for OAE 1a. 476

None of these studies calculated ε_p . At Shatsky, no $\delta^{13}C_{carb}$ is available. 477 Cismon is characterized by large variations in the source of organic matter¹¹ and 478 TEX₈₆ is influenced by thermal maturity⁵⁶. Heimhofer et al.¹⁰ used, among others, C_{17} 479 480 and C_{18} short-chain *n*-alkanes to reconstruct ε_p across segment C5 to C7 in the Serre 481 Chaitieu section from France (Fig. S6). For this part of OAE 1a the δ^{13} C of the short-482 chain *n*-alkanes in the Serre Chaitieu section ranges between -32 and -27 ‰, similar 483 to our estimates for these compounds across segments C5-C7 at Cau (-32 to -25 ‰) and low-resolution record of Djebel Serdj (-27.9 to -31.8 %). Their estimates of ε_{p} , 484 485 although not depicting the increase in pCO_2 as there are no data from segments C3 and C4, with maximum ε_p values of around 22‰ are very similar to our maximum ε_n 486 487 values across this period (maximum ε_p at Cau and Djebel Serdje are ~ 22‰ during C4-C6), markedly higher than any values yet to be reported for the last 15 million 488 years³⁵. We therefore conclude that our $\delta^{13}C_{alg}$ and ε_p estimates are typical for OAE 489 490 1a, and reflect a global signal.

491

492

Estimating the b-value

493 The growth rate and cell geometry impact the isotopic effect expressed during the 494 photosynthetic fixation of carbon $(\varepsilon_p)^{3l,33}$. These effects are combined into the 495 constant *b* and have an impact on the absolute *p*CO₂ estimates. In the modern ocean, *b* 496 for haptophyte algae ranges from < 100 in oligothrophic regions to > 200 in upwelling 497 regions^{33,57-59}

498 Although it is not straightforward to estimate *b* during OAE 1a, previous 499 estimates for the Late Cretaceous and OAE 2 assumed a value of $171^{24,41,43}$. This 500 value is based on the proposed linear correlated between *b* and sedimentary bulk δ^{15} N 501 values⁵⁷ and an assumed δ^{15} N of -2 ‰ during the Late Cretaceous at Demerara rise⁴¹. 502

(8)
$$b = 53.27 \left[\frac{\delta^{15} N - 12.386}{-8.146} \right] + 77.21$$

503

504 Bulk δ^{15} N values across OAE 1a yield similar negative values between -1 and -3 505 $\%^{50,60}$, also suggesting a *b* value of ~ 171. This relationship is implicitly based on

modern ocean alkenone δ^{13} C values and therefore is tuned for coccoltihophorids; 506 algae with different surface area to volume ratios or even different membrane 507 diffusivity could have different b values⁶¹. This represents a first order limitation on 508 the calculation of absolute pCO_2 values. Nonetheless, Popp et al.³¹ have shown that 509 other photoautotrophs do exhibit similar relationships; as such, we can assume a 510 511 constant b value of 171 for our pCO_2 estimates but use a range of b values to 512 constrain the uncertainty of the absolute values. Given the lack of evidence for 513 changes in the algal community structure, we suggest that this has had minimal 514 impact on our temporal trends.

515 Cau was not an upwelling site and is characterized by background TOC values 516 between 0.5 and 1.5 %. Even during OAE 1a the period of increased organic matter 517 burial was short lived and not very intense as indicated by the moderate and brief 518 increase in TOC to maximum values of 2.5 % (Fig. S4), making it unlikely that the *b* 519 value was much higher. If *b* did increase, then this would have occurred during 520 segments C3-C6 and accounting for it would yield higher pCO_2 estimates at this time.

521 522

Estimating subtropical Sea Surface Temperatures (SSTs)

523 Sea surface temperatures (SSTs) impact the estimated pCO_2 in several ways, but predominantly from their influence on Henry's Law. Here we estimated SSTs using 524 525 the TEX_{86} palaeothermometer, which is based on the distribution of isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) in marine sediments^{62,63}. The advantage 526 of TEX₈₆ over inorganic geochemical proxies is that TEX₈₆ is less influenced by 527 diagenesis, which for example can alter the primary δ^{18} O signature of carbonates, and 528 529 is not directly controlled by seawater chemistry such as Mg/Ca and δ^{18} O, which very 530 likely was different during the Cretaceous and especially OAEs.

531 We did not detect measurable amounts of GDGTs in the samples from Cau. 532 Although the organic matter at Cau is thermally immature²⁰ with respect to oil 533 generation, this is not necessarily the case with respect to the occurrence of GDGTs. 534 Due to the presence of heteroatoms (i.e. the ether bond), GDGTs begin to degrade at 535 relatively low thermal maturity^{64,65}; in fact, they are uncommon in the maturation 536 window when steranes, pristane and phytane have begun to be liberated from kerogen.

To overcome this issue, we obtained TEX₈₆-based SST estimates from DSDP 537 Site 398 across OAE 1a. Site 398 is located in the North Atlantic, slightly north of 538 Cau (Fig. 1), and covers OAE $1a^{14}$. Importantly it contains abundant GDGTs. Using 539 the TEX₈₆^H-calibration⁶⁶, SSTs at Site 398 across OAE 1a (C3-C6) are remarkably 540 541 warm and stable with values around 34.5 °C (Fig. S5c). Such high subtropical SSTs 542 are consistent with a large range of proxy-evidence that indicates that the Cretaceous was characterized by a hot greenhouse climate $^{67-70}$. In addition, it closely ties-in with 543 recent TEX₈₆^H estimates across OAE 1a from the mid-latitudes (~39 °N 544 palaeolatitude) that range between 30 and 33 $^{\circ}C^{2}$, tropical SSTs in the Pacific that 545 range between 31 and 38 °C during OAE $1a^{63,71}$, and high-latitude Southern Ocean (~ 546 55 °N palaeolatitude) SSTs of around 28 °C during OAE 1a⁶⁹, which all indicate very 547 high SSTs during OAE 1a with SSTs > 30 °C extending far into the mid-latitudes. 548

BIT-values, a proxy for the input of soil derived GDGTs⁷², vary between 0.06 and 0.41 and there is no correlation between BIT-values and SSTs, arguing against a significant influence of terrestrial GDGTs on the TEX₈₆^H estimates. The organic matter at Site 398 across OAE 1a is thermally immature as indicated by the C₃₁ hopane $\beta\beta/(\beta\beta+\beta\alpha+\alpha\beta)$ ratios that are always greater than 0.5 (Fig. S5d).

554 The reconstructed SSTs from Site 398 indicate a stable and warm subtropical 555 climate, which appears inherent to greenhouse climates⁷³. Based on the record from Site 398, we assumed that subtropical SSTs across OAE 1a were relatively stable at Cau at 34.5 °C. Higher (36°C) or lower (30°C) SST estimates would lead to slightly different (max 250 ppmv) CO₂ values (Fig. S6). Assuming an increase in SSTs across OAE 1a, as seen in the higher latitudes², would result in a slightly more pronounced increase in pCO_2 across OAE 1a.

561 562

Uncertainty envelops

563 As explained above, our best pCO_2 estimates assume a *b*-value of 171, that $\delta^{13}C_{carb}$ 564 reflects seawater $\delta^{13}C_{DIC}$, and that SSTs in the subtropics were 34.5 °C. Assuming 565 these parameters, pCO_2 was calculated for, where possible, all four biomarkers and an 566 average of these estimates was plotted in figure 3 as a black line with orange data 567 points.

To accurately incorporate the main sources of uncertainty in our pCO_2 568 calculations, largely associated with $\delta^{13}C_{DIC}$ determinations from $\delta^{13}C_{carb}$ that has an 569 impact on ε_{p} and uncertainty in the *b*-value due to growth rate and cell physiology that 570 influences the absolute pCO_2 estimates, we calculated a minimum and maximum 571 pCO_2 scenario. The minimum scenario assumes that $\delta^{13}C_{carb}$ overestimates seawater 572 $\delta^{13}C_{DIC}$ by 0.5 ‰ and a low-end b-value of 150. The maximum scenario assumes that 573 $\delta^{13}C_{carb}$ underestimates seawater $\delta^{13}C_{DIC}$ by 0.5 ‰ and a high-end b-value of 200. 574 Note that uncertainty in $\delta^{13}C_{carb}$ manifest in ϵ_p , which at Cau is similar compared to 575 previous estimates¹⁰ and other sites. A range from 150 to 200 for b was chosen as 576 577 both Cau and Djebel Serdje are not upwelling sites and not characterized by large 578 variations in TOC content or changes in algal composition and physiology. Assuming 579 these parameters, pCO_2 was calculated for all four biomarkers. In figures 3 and S8, 580 the orange shading represents the spread between the minimum and maximum pCO_2 581 estimates and, again, is the average value of all biomarker measurements (see Fig. 582 S7). The light yellow shading represents the analytical uncertainty related to the compound specific δ^{13} C measurements (e.g., how well does the average value of the 583 four biomarkers represent the spread in compound specific δ^{13} C) and represents 1σ 584 from the average min. and max. pCO_2 -scenario (e.g. 1σ from the orange shading). 585

586 The uncertainty in Δ^{13} C (the turquoise shading in figure 3), was calculated 587 assuming both δ^{13} C_{carb} and δ^{13} C_{TOC} were as much as 0.5 ‰ too high or too low 588 compared to seawater δ^{13} C_{DIC} and primary photosynthate δ^{13} C, respectively, resulting 589 in a combined error of 0.71 ‰ ($\sqrt{(0.5^2+0.5^2)}$).

590

591 **Duration of isotope segment C3**

Following Menegatti et al.²³ we defined C3 to span the decrease in bulk $\delta^{13}C_{carb}$, covering the interval between 46 and 62 meter in our section (Fig. 2a). Identical to other OAE 1a records^{5,15,16} the onset of the nannoconid crisis precedes the beginning of C3 at Cau. The first occurrence of *Schackoina cabri* at the top of C3 corresponds to what has been observed in other expanded sections^{16,17}.

597 Previous estimates for the duration of C3 range from 20 to 45 kyr at 598 Cismon^{14,15}. However results from other more expanded sections demonstrate that 599 this interval in Cismon is (highly) condensed and the duration of C3 was likely 600 longer, with ranges between 100 and 300 kyr^{16,17,74,75}. Recently the C3 interval at 601 Cismon was also redefined, with an updated duration of between 100 and 200 kyr⁵⁶.

602

603 Duration of the reconstructed CO₂ input at Cau

604 Even assuming a minimal duration of 20-45 ka for C3 as suggested by the original 605 Cismon estimates^{14,15}, the reconstructed CO_2 increase at Cau occurs across the later 606 part of C3 as well as the majority of C4, which lasted 239 ± 39 kyr at Cismon¹⁵. This 607 implies that independent of the exact duration of C3, the CO₂ increase occurred over 608 at least 100 ka. Assuming a more likely duration of C3 of 100 to 300 kyr together 609 with the duration of C4 of 239 ka, implies that the CO₂ increase at Cau likely 610 occurred over more than 300 ka.

611

612 **Correlations to Cau**

We used the carbon isotope segment chemostratigraphy, originally developed by 613 Menegatti et al.²³, to compare the pCO_2 record from Djebel Serdj and Os-isotope 614 615 record from Cismon to the records from Cau. For Cismon we used the updated definition of isotope segment C3 as used in Bottini et al.⁵⁶. For the timing of the 616 nanoconid crisis at Cismon we used the definition given in Malinverno et al.¹⁵. For 617 618 Djebel Serdj we redefined the carbon isotope segments as shown in Figure S8, largely following Heldt et al.²⁶. The low-resolution pCO_2 estimates from Djebel Serdj were 619 620 plotted on top of those of Cau using a direct correlation. So for example, the estimates 621 from the middle of segment C3 at Djebel Serdj are shown in the middle of C3 at Cau. 622 The vertical error bars on the pCO_2 estimates from Djebel Serdj as shown in figure 3 623 represents the uncertainty in this correlation.

624625 References:

- Bopp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. The post-Paleozoic chronology and mechanism of ¹³C depletion in primary marine organic matter. *Am. J. Sc.* 289, 436-454 (1989).
- 629 31 Popp, B. N. *et al.* Effect of Phytoplankton Cell Geometry on Carbon Isotopic
 630 Fractionation. *Geochim. Cosmochim. Ac.* 62, 69-77 (1998).
- 631 32 Laws, E. A., Popp, B. N., Cassar, N. & Tanimoto, J. ¹³C discrimination patterns in oceanic phytoplankton: likely influence of CO₂ concentrating mechanisms, and implications for palaeoreconstructions. *Funct. Plant Biol.* 29, 323-333 (2002).
- Bidigare, R. R. et al. Consistent fractionation of ¹³C in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Global Biogeochem. Cy. 11, 279-292 (1997).
- 638 34 Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Mar. Chem.* 2, 203-215 (1974).
- 640 35 Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked
 641 Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene.
 642 Science 309, 600-603 (2005).
- 643 36 Schoon, P. L., Sluijs, A., Sinninghe Damsté, J. S. & Schouten, S. Stable
 644 carbon isotope patterns of marine biomarker lipids in the Arctic Ocean during
 645 Eocene Thermal Maximum 2. *Paleoceanography* 26, PA3215 (2011).
- 646 37 Seki, O. *et al.* Alkenone and boron-based Pliocene pCO₂ records. *Earth Plant.*647 Sc. Lett. 292, 201-211 (2010).
- Badger, M. P. S. *et al.* CO₂ drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. *Paleoceanography* 28, 42-53 (2013).
- Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. Mid-Pliocene warmth:
 stronger greenhouse and stronger conveyor. *Mar. Micropaleontol.* 27, 313-326
 (1996).
- 40 Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by
 phytoplankton and estimates of ancient CO₂ levels. *Global Biogeochem. Cy.* 6,
 185-198 (1992).

- Bice, K. L. *et al.* A multiple proxy and model study of Cretaceous upper ocean
 temperatures and atmospheric CO₂ concentrations. *Paleoceanography* 21,
 PA2002 (2006).
- 659 42 Schouten, S. *et al.* Biosynthetic effects on the stable carbon isotopic
 660 compositions of algal lipids: implications for deciphering the carbon isotopic
 661 biomarker record. *Geochim. Cosmochim. Ac.* 62, 1397-1406 (1998).
- 43 van Bentum, E. C., Reichart, G. J., Forster, A. & Sinninghe Damsté, J. S.
 Latitudinal differences in the amplitude of the OAE-2 carbon isotopic
 excursion: pCO₂ and paleo productivity. *Biogeosciences* 9, 717-731 (2012).
- 665 44 Schouten, S., van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. &
 666 Sinninghe Damsté, J. S. Effects of an oceanic anoxic event on the stable
 667 carbon isotopic composition of early Toarcian carbon. *Am. J. Sci.* 300, 1-22
 668 (2000).
- Romanek, C. S., Grossman, E. L. & Morse, J. W. Carbon isotopic
 fractionation in synthetic aragonite and calcite: Effects of temperature and
 precipitation rate. *Geochim. Cosmochim. Ac.* 56, 419-430 (1992).
- 46 Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope
 673 fractionation between dissolved bicarbonate and gaseous carbon dioxide.
 674 *Earth Plant. Sc. Lett.* 22, 169-176 (1974).
- 47 Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H.
 676 N. Toward a Neoproterozoic composite carbon-isotope record. *Geol. Soc. Am.*677 *Bull.* 117, 1181-1207 (2005).
- 48 Jenkyns, H. C. in *Proceedings of the Ocean Drilling Program, Scientific*679 *Results, vol. 143* (eds E.L. Winterer, W.W. Sager, J.V. Firth, & J.M. Sinton)
 680 99-104 (Ocean Drilling Program, 1995).
- 681 49 Stoll, H. M. Limited range of interspecific vital effects in coccolith stable
 682 isotopic records during the Paleocene-Eocene thermal maximum.
 683 Paleoceanography 20, PA1007 (2005).
- 50 Dumitrescu, M. & Brassell, S. C. Compositional and isotopic characteristics of
 organic matter for the early Aptian Oceanic Anoxic Event at Shatsky Rise,
 ODP Leg 198. *Palaeogeogr., Palaeoclimatol., Palaeoecol.* 235, 168-191
 (2006).
- 688 51 Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number
 689 distributions of marine source rock derived crude oils through geological time.
 690 Org. Geochem. 12, 61-73 (1988).
- 691 52 Schwark, L. & Empt, P. Sterane biomarkers as indicators of palaeozoic algal
 692 evolution and extinction events. *Palaeogeogr., Palaeoclimatol., Palaeoecol.*693 240, 225-236 (2006).
- 694 53 Volkman, J. Sterols in microorganisms. *Appl Microbiol Biotechnol* 60, 495695 506 (2003).
- 69654Brassell, S. C. & Dumitrescu, M. Recognition of alkenones in a lower Aptian697porcellanite from the west-central Pacific. Org. Geochem. 35, 181-188 (2004).
- 55 Dumitrescu, M. & Brassell, S. C. Biogeochemical assessment of sources of
 organic matter and paleoproductivity during the early Aptian Oceanic Anoxic
 Event at Shatsky Rise, ODP Leg 198. Org. Geochem. 36, 1002-1022 (2005).
- 56 Bottini, C. *et al.* Climate variability and ocean fertility during the Aptian Stage.
 702 *Clim. Past* 11, 383-402 (2015).
- Andersen, N., Müller, P. J., Kirst, G. & Schneider, R. R. in *Use of Proxies in Paleoceanography* (eds Gerhard Fischer & Gerold Wefer) Ch. 19, 469-488
 (Springer Berlin Heidelberg, 1999).

- Schulte, S., Benthien, A., Andersen, N., Müller, P. J. & Schneider, R. in *The South Atlantic in the Late Quaternary: Reconstruction of Material Budget and Current Systems* (eds G. Wefer, S. Mulitza, & V. Ratmeyer) 195-211 (Springer, 2003).
- 710 59 Pagani, M. The Alkenone-CO₂ Proxy and Ancient Atmospheric Carbon
 711 Dioxide. *Philos. T. Roy. Soc. A.* 360, 609-632 (2002).
- Kuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E. &
 Sinninghe Damsté, J. S. N₂-fixing cyanobacteria supplied nutrient N for
 Cretaceous oceanic anoxic events. *Geology* 32, 853-856 (2004).
- Pancost, R. D. *et al.* Reconstructing Late Ordovician carbon cycle variations. *Geochim. Cosmochim. Ac.* 105, 433-454 (2013).
- Schouten, S., Hopmans, E. C., Schefuss, E. & Sinninghe Damsté, J. S.
 Distributional variations in marine crenarchaeotal membrane lipids: a new tool
 for reconstructing ancient sea water temperatures? *Earth Plant. Sc. Lett.* 204,
 265-274 (2002).
- Schouten, S. *et al.* Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. *Geology* 31, 1069-1072 (2003).
- Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The effect of
 maturity and depositional redox conditions on archaeal tetraether lipid
 palaeothermometry. *Org. Geochem.* 35, 567-571 (2004).
- Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic
 geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. *Org. Geochem.* 54, 19-61 (2013).
- Kim, J.-H. *et al.* New indices and calibrations derived from the distribution of
 crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface
 temperature reconstructions. *Geochim. Cosmochim. Ac.* 74, 4639-4654 (2010).
- Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J. & Pancost, R. D.
 High sea-surface temperatures during the Early Cretaceous Epoch. *Nature Geosci.* 4, 169-172 (2011).
- 73668Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, J. S. High737temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888-892738(2004).
- Jenkyns, H. C., Schouten-Huibers, L., Schouten, S. & Sinninghe Damsté, J. S.
 Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. *Clim. Past* 8, 215-226 (2012).
- 742 70 Tarduno, J. A. *et al.* Evidence for Extreme Climatic Warmth from Late
 743 Cretaceous Arctic Vertebrates. *Science* 282, 2241-2243 (1998).
- 744 71 Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C. &
 745 Sinninghe Damsté, J. S. Instability in tropical Pacific sea-surface temperatures
 746 during the early Aptian. *Geology* 34, 833-836 (2006).
- 747 72 Hopmans, E. C. *et al.* A novel proxy for terrestrial organic matter in sediments
 748 based on branched and isoprenoid tetraether lipids. *Earth Plant. Sc. Lett.* 224,
 749 107-116 (2004).
- 750 73 Pearson, P. N. *et al.* Stable warm tropical climate through the Eocene Epoch.
 751 *Geology* 35, 211-214 (2007).
- 74 Hu, X., Zhao, K., Yilmaz, I. O. & Li, Y. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. *Cretaceous Res.* 38, 40-51 (2012).

756 75 Huck, S., Heimhofer, U., Rameil, N., Bodin, S. & Immenhauser, A. Strontium
757 and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water
758 carbonates: Northern Tethyan platform drowning predates OAE 1a. *Earth*759 *Plant. Sc. Lett.* **304**, 547-558 (2011).

Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic

Event 1a

Supplementary figures

Figure S1: Comparison of $\delta^{13}C_{carb}$ records 1 $\delta^{13}C_{carb}$ data from Cau (left) and SE France (right)^{S1} on their individual depth scales and published biostratigraphy.

Figure S2: Comparison of $\delta^{13}C_{carb}$ records 2 $\delta^{13}C_{carb}$ data from SE France^{S1} tuned to Cau using a minimal of four tie-points (indicated by red arrows) to demonstrate the similarity in structure and magnitude of change. Shaded areas represent 0.5 ‰ uncertainty.

Figure S3: Sterane distribution at Cau a) $\delta^{13}C_{TOC}$ and $\delta^{13}C_{alg}$ across OAE 1a at Cau together with b) relative C_{27} - $C_{30} \alpha \alpha \alpha R$ sterane distribution.

Figure S4; Total organic carbon (TOC) record from Cau.

a) bulk $\delta^{13}C_{org}$ across OAE 1a at DSDP Site 398 with C-isotope stratigraphy^{S2} together with b) ratio of crenarchaeol abundance over GDGT-0, c) SSTs, based on the TEX₈₆^H-calibration^{S3}, and d) C₃₁ hopane maturity index. Error bars on TEX₈₆^H-SSTs represent 1 σ of duplicates.

Figure S6; Relationship between ε_p and pCO_2

The relationship between ε_p and pCO_2 , assuming SSTs values between 30 (continuous lines) and 36 °C (dashed lines) and *b* values of 130 (orange), 160 (green), and 200 (blue). For our pCO_2 calculations we assumed a constant SST of 34.5 °C and *b* value of 171.3 (thick black line). The range of ε_p values observed across segments C2 to C7 at Cau (red arrow) and segment C5 to C7 at Serre Chaitieu^{S4} (black arrow) are also indicated.

Figure S7; Uncertainty envelopes

 pCO_2 estimates derived from the $\delta^{13}C$ values of individual biomarkers, as well as the resulting average that is used in Figure 3 of the main manuscript.

Figure S8; δ^{13} C and *p*CO₂ Djebel Serdj formation in Tunesia

 $\delta^{13}C_{carb}^{S5}$ together with low-resolution $\delta^{13}C_{alg}$ (not corrected to bulk biomass) and pCO_2 record, calculated using the exact same assumption as used to calculate pCO_2 at Cau.

Supplementary References

- S1 Kuhnt, W., Holbourn, A. & Moullade, M. Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a. *Geology* **39**, 323-326 (2011).
- S2 Li, Y.-X. *et al.* Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma). *Earth Plant. Sc. Lett.* **271**, 88-100 (2008).
- S3 Kim, J.-H. *et al.* New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. *Geochim. Cosmochim. Ac.* 74, 4639-4654 (2010).
- S4 Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N. & Weissert, H.
 Absence of major vegetation and palaeoatmospheric pCO₂ changes associated with oceanic anoxic event 1a (Early Aptian, SE France). *Earth Plant. Sc. Lett.* 223, 303-318 (2004).
- S5 Heldt, M., Bachmann, M. & Lehmann, J. Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian–Aptian in north-central Tunisia: Influence of the OAE 1a on the southern Tethys margin. *Palaeogeogr., Palaeoclimatol., Palaeoecol.* **261**, 246-260 (2008).