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ABSTRACT  23 

This paper reports the first study applying a triple-isotope approach for source apportionment 24 

of polycyclic aromatic hydrocarbons (PAHs). The 13C/12C, 14C/12C and 2H/1H isotope ratios of 25 

PAHs were determined in forest soils from mountainous areas of the Czech Republic, 26 

European Union. Statistical modeling applying a Bayesian Markov Chain Monte Carlo 27 

(MCMC) framework to the environmental triple isotope PAH data and an end-member PAH 28 

isotope database allowed comprehensive accounting of uncertainties and quantitative 29 

constraints on the PAH sources between biomass combustion, liquid fossil fuel combustion, 30 

and coal combustion at low and high temperatures. The results suggest that PAHs in this 31 

central European region had a clear predominance of coal combustion sources (75 ± 6%; 32 

uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (~650 ºC) (61 ± 8%). 33 

Combustion of liquid fossil fuels and biomass represented 16 ± 3% and 9 ± 3% of the total 34 

PAH burden (ƩPAH14), respectively. Although some soils were located close to potential 35 

PAH point sources, the source distribution was within a narrow range throughout the region. 36 

These observation-based top-down constraints on sources of environmental PAHs provides a 37 

reference for both improved bottom-up emission inventories and guidance for efforts to 38 

mitigate PAH emissions.  39 

Keywords: Bayesian statistics, polycyclic aromatic hydrocarbons, coal combustion, 40 

radiocarbon, stable carbon isotope, stable hydrogen isotope 41 

 42 

 43 

 44 

  45 

Page 2 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



3 
 

INTRODUCTION 46 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, predominantly anthropogenic, 47 

organic molecules of environmental concern due to the mutagenic and carcinogenic properties 48 

of some congeners (e. g., benzo[a]pyrene)1. Therefore, owing to their toxicity, they can pose a 49 

threat to humans and the environment. Although PAHs are present in uncombusted petroleum 50 

(i.e., petrogenic PAHs), the most important sources of PAHs in the environment are from the 51 

incomplete combustion of biomass (e.g., wood) and fossil fuels (e.g., petroleum and coal) 52 

(i.e., pyrogenic PAHs)2,3. In addition to their own negative effects, PAHs have also been 53 

extensively used as molecular tracers of combustion-related airborne particles3,4, which cause 54 

numerous human health problems (e.g., lung cancer, respiratory and heart diseases)5,6. Among 55 

atmospheric contaminants, PAHs account for most (35-82%) of the total mutagenic activity of 56 

airborne particles7 and hence, a reduction of PAH emissions is essential to improve air 57 

quality.  58 

Potential sources of airborne PAHs are vehicle exhaust, power generation, residential 59 

heating/cooking, abrasion of tires and asphalt surfaces, waste incineration, and industrial 60 

processes. A better understanding of PAH sources is essential to mitigate air pollution, but 61 

unfortunately the relative contributions of different sources to PAHs are still poorly 62 

understood. A variety of techniques to apportion sources of PAHs exist in the literature, based 63 

on either molecular or isotopic compositions3. For instance, numerous studies have used 64 

diagnostic ratios of PAH concentrations, usually isomeric ratios, to infer PAH sources3,8,9. 65 

However, the molecular composition of PAHs is affected by differential atmospheric removal 66 

and transformation processes9-11. Furthermore, these isomeric ratios are not source specific 67 

and show considerable intrasource variability9. The intrinsic carbon isotope composition of an 68 

individual PAH molecule is a more conservative source tracer12-15. Although δ13C analysis on 69 

individual PAHs is a well-established technique12,16,17, combining both compound-specific 70 
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stable isotope and (natural abundance) radiocarbon analyses (CSIA and CSRA, respectively) 71 

offers a potentially far more powerful tool for quantitatively determining the sources of 72 

contaminants in the environment. In the literature, combined compound-specific δ13C and 73 

∆14C measurements have been applied to apportion PAH sources in sediments13,14, soils18 and 74 

air15,19-22. Introducing more isotope systems would naturally offer further improvements in 75 

PAH source constraining capacity. As with any mass-balance approach the number of sources 76 

that can be differentiated by N markers is N+1. Thus, the advantage of triple-isotope analysis 77 

is that we can resolve four sources, rather than two (one marker) or three (two markers). Sun 78 

and collaborators23 reported the potential use of the stable hydrogen isotope in combination 79 

with carbon isotopes for source apportionment of PAHs, but very few δ2H-PAH 80 

measurements in both emissions and ambient samples have been published to date. The only 81 

δ2H determinations performed in ambient emissions was limited to naphthalene, the simplest 82 

PAH, from emissions of a combustion process in an alumina refinery24. Combining both 83 

stable carbon and radiocarbon isotopes, with the hydrogen isotope analyses represents a 84 

promising approach for elucidating sources of PAHs.  85 

The aim of the present study is to demonstrate the triple-isotope approach (δ13C, ∆14C, δ2H) 86 

for the source apportionment of different PAHs by application to forest soils from the Czech 87 

Republic. The Czech Republic is considered one of the most industrially-developed countries 88 

among the new member states of the European Union and is used here as a representative for 89 

Central Europe. The reason for studying the soil compartment is that PAHs in soil reflect a 90 

longer-term input of pollutants compared to airborne concentrations. To the best of our 91 

knowledge, by analyzing simultaneously three isotopes (stable carbon and hydrogen, and 92 

radiocarbon), this study represents the first compound-specific application for source 93 

apportionment using a triple-isotope approach.  94 

EXPERIMENTAL SECTION 95 
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Study Area. Ten forest soil samples from mountainous sites within Czech Republic were 96 

collected during September 2009 (Figure 1, Table 1). These mountain soils, which have been 97 

repeatedly studied since 199525, mainly reflect atmospheric transport and deposition. Three 98 

samples (#1, #2 and #3) were collected in the north-western part of the country. This border 99 

region shared by Germany, Poland and Czech Republic and known as the “black triangle”, is 100 

characterized by extremely high levels of pollutant emissions26. Sample #1 was taken from 101 

the Krušné Mts., relatively close to the town Litvínov, site of the largest oil refinery in the 102 

Czech Republic. Three more samples (#4, #5 and #6) were collected in the Moravian Region 103 

(NE Czech Republic). Two of them (#5 and #6) in the Beskydy Mts., located at the border 104 

with Slovakia and adjacent to the industrial centers of Valasske Mezirici and Ostrava, which 105 

contain a coal tar refinery (DEZA Corporation), a black carbon production plant (CABOT 106 

CS) and seven hard coal mines (OKD Corp.). Sample #7 was collected near the observatory 107 

of Košetice, a regional background station for international and national air monitoring 108 

programmes. Samples #8, #9 and #10 were forest soils from the Bohemian Region (SW 109 

Czech Republic), the Czech Bavarian forest. Spruce trees were the main vegetation type 110 

found in all sampling sites. Details on soil sampling are described in the supplementary 111 

material. 112 

Quantification of PAHs. Analyses of PAHs were performed at the Research Centre for 113 

Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic. Briefly, an 114 

aliquot of ca. 10 g dry soil was extracted using automated warm Soxhlet extraction with 115 

dichloromethane (DCM). The extract was cleaned-up using activated silica flash column 116 

chromatography and analytes eluted with DCM. The eluate was concentrated using a stream 117 

of nitrogen in a concentrator unit, and transferred into a mini vial. Before injection, an internal 118 

standard of terphenyl was added. Samples were analyzed by a 6890N GC (Agilent, USA) 119 

capillary gas chromatography coupled to a mass spectrometer 5973N MS (Agilent, USA) 120 
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using electronic ionization (70 eV). PAHs were analyzed by selective ion recording (SIR). 121 

Further details on sample extraction, clean-up, instrumental analysis and quality control 122 

procedures are included in the supplementary material. 123 

Extraction of PAHs for Isotope Analysis. Sample extraction for the isotope analysis was 124 

performed at RECETOX, Brno, Czech Republic. Based on the concentrations found in the 125 

individual soil samples in the previous step, the soil sample size needed to provide a sufficient 126 

quantity of selected PAHs was determined. It varied between 500 and 1500 g of soil among 127 

the top soil samples. Soxhlet-extracted samples with DCM were pre-cleaned using large 128 

volume silica gel columns and concentrated. As the mountain forest soils contain large 129 

amounts of organic material, additional clean-up was needed. Gel-permeation 130 

chromatography was applied to remove high molecular weight compounds from the samples. 131 

Samples were concentrated to a final volume of 1 ml for further isotope analyses. Further 132 

information on these clean-up procedures is provided in the supplementary material. It has 133 

been showed and reported that these purification procedures do not affect the original 134 

molecular isotopic signatures. Results from studies on isotope fractionation during 135 

purification procedures are included in the supplementary material.  136 

Isolation of PAHs for Radiocarbon Analysis. Isolation of PAHs from soil extracts was 137 

carried out at Stockholm University as previously described14,27,28. Extracts were repeatedly 138 

injected onto a preparative capillary gas chromatography (pcGC) system programmed to trap 139 

selected PAHs14,29,30. The pcGC system consisted of a gas chromatograph coupled to a flame 140 

ionization detector 6890N GC (Agilent, Palo Alto, USA) and an autoinjector (7683A, 141 

Agilent) integrated with a Gerstel cooled injection system (CIS), a zero-dead volume effluent 142 

splitter and a Gerstel preparative trapping device. Since the abundance of the target PAH 143 

compounds present in these soil samples was quite low relative to the requirements for 14C 144 

measurements (~20-100 µg), individual PAHs were pooled and trapped as follows: 1. 145 
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Phenanthrene (PHEN) + anthracene (ANTH); 2: fluoranthene (FLU) + pyrene (PYR); 3: 146 

benz[a]anthracene (BaA) + triphenylene (TP) + chrysene (CHRY); 4: benzo[b]fluoranthene 147 

(BbF) + benzo[j]fluoranthene (BjF) + benzo[k]fluoranthene (BkF); 5: benzo[e]pyrene (BeP) + 148 

benzo[a]pyrene (BaP); 6: indeno[1,2,3-cd]pyrene (IcdP) + benzo[ghi]perylene (BghiP). 149 

Additional details about chromatographic conditions and trapping procedures are included in 150 

the Supporting Information. 151 

Analysis of Stable Carbon and Hydrogen Isotopes. δ13C and δ2H analyses of soil extracts 152 

were performed at The University of Bristol, UK. The δ13C and δ2H isotope ratio 153 

determinations were performed by gas chromatography-isotope ratio mass spectrometry (GC-154 

IRMS). δ13C analyses were performed using a ThermoQuest Finnigan DeltaPlusXL IRMS 155 

coupled to an Agilent 6890 GC via a ThermoQuest Finnigan GC Combustion III interface. 156 

δ2H determinations were performed using a Thermo DeltaVPlus IRMS coupled to a Trace GC 157 

via a GC Isolink and ConfloIV interface. For both δ13C and δ2H analyses, chromatographic 158 

peaks were integrated in groups using the same ‘chromatographic windows’ described above 159 

corresponding to those compounds which were isolated by pcGC, so as to accurately 160 

represent the content of the samples analyzed by accelerator mass spectrometry (AMS). The 161 

reported isotopic results, expressed in the per mil deviation (‰) of the isotope ratio from the 162 

standards Peedee belemnite (PDB) and Vienna Standard Mean Ocean Water (VSMOW) for C 163 

and H, respectively, represent the arithmetic means of triplicate analyses. Further information 164 

on the instrumental analysis and quality procedures is provided in the supplementary material.   165 

Analysis of Radiocarbon. The extracts for 14C analysis were shipped to the US National 166 

Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility (Woods Hole, MA, 167 

USA). The pcGC isolates were first purified, then combusted at 850 ºC for its conversion to 168 

carbon dioxide and finally reduced to graphite. Targets of graphite were analyzed for 14C by 169 

AMS according to standard procedures30-32. All 14C determinations are expressed as the per 170 
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mil (‰) deviation from NBS oxalic acid I. Further details about the 14C analysis are included 171 

in the Supplementary Information.     172 

Bayesian Markov Chain Monte Carlo method for source apportionment. The three-173 

dimensional isotope signatures of the different PAHs were used in an isotopic mass balance 174 

source apportionment model to differentiate four main sources: biomass, liquid fossil (e.g., 175 

petroleum and oil), low temperature (~650 ºC) coal combustion and high temperature (~900 176 

ºC) coal combustion, largely following our earlier dual-isotope (three source) 177 

approaches15,33,34. The current study’s four sources were selected based on two criteria: 1) 178 

they encompass the majority of PAHs emitted in this region35, 2) they are differentiable by 179 

means of δ13C, ∆14C and δ2H isotopic signatures. In particular, we note that PAHs emitted 180 

from high temperature coal combustion are more depleted in 13C while more enriched in 2H, 181 

compared to coal combustion at lower temperatures17.  182 

The source-specific isotope values (end members) were collected from the literature, and are 183 

summarized in Table S1. These end members are associated with significant variability and 184 

uncertainties, especially in the δ2H dimension. Such variability has recently been shown to 185 

affect not only the precision of the source apportionment calculations, but also the estimated 186 

central values (e.g., mean and median) of the source fractions33. To account for this variability 187 

a Bayesian Markov Chain Monte Carlo (MCMC) approach was implemented36, in which the 188 

end member distributions are modelled as normal distributions with mean and standard 189 

deviation defined by the literature values. The source-specific isotope values used in the 190 

present study are listed in Table 2 and its calculation is detailed in the Supporting 191 

Information. The MCMC approach effectively samples the 4-dimensional fractional source 192 

space while satisfying the mass-balance criterion and accounting for the end member 193 

variability. The result of the Bayesian approach is a probability density function (pdf) of the 194 

relative source contribution for each source (Figure 3A). From this pdf the statistical 195 
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parameters of interest (e.g., mean, median, standard deviation or confidence intervals) may be 196 

computed. The MCMC computations were run using an in-house written MATLAB version 197 

2014a (The MathWorks, Natick, MA, USA) script, with 200,000 iterations, a burn-in (initial 198 

search phase) of 10,000 and a data thinning of 10. The details of the Bayesian calculation is 199 

published elsewhere34 and the MATLAB script is presented in the present paper’s Supporting 200 

Information. 201 

RESULTS AND DISCUSSION 202 

PAH Concentrations and Composition. The PAHs input to mountain soils is mainly 203 

through dry or wet deposition of aerosol particles or residues of vegetative litter, and by 204 

processes of air-soil partitioning37,38. Forest soils are usually rich in organic matter, which 205 

favors the accumulation of PAHs. The content of PAHs (sum of 14 PAHs) in the central 206 

European forest soils ranged from 0.53 to 9.1 µg·g-1 (4.3 ± 2.8 µg·g-1, µ±σ)(Table 1). These 207 

concentrations were in agreement with previously reported concentrations at the same 208 

sampling sites25,39 (1.7-8.2 µg·g-1). As was expected from their proximity to emission sources, 209 

the highest PAH loadings were observed at both northwestern (7.4 and 5.5 µg·g-1 for #1 and 210 

#2 respectively) and eastern border regions (9.1 and 5.9 µg·g-1 for #5 and #6, respectively). 211 

The lowest concentrations were found at Mt. Sumava, close to the border region shared with 212 

Germany-Czech Republic-Austria (#9, 0.53 µg·g-1) and at the regional site of Kosetice (#7, 213 

0.87 µg·g-1). All samples, except for #9, had a PAH content slightly higher than reported for 214 

other remote/forest sites in Europe, such as in the Pyrenees40 (0.77 µg·g-1), Alps41 (1.3 ± 0.6 215 

µg·g-1) and Tatras41 (1.6 ± 0.4 µg·g-1). However, these border mountain soils may be also 216 

affected by long range transport contamination coming from Poland, Germany, Slovakia or 217 

Austria besides Czech Republic42.  218 
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Relative PAH concentrations (Diagnostic Ratios, DR) are typically used for conventional 219 

semiquantitative source apportionment through the comparison of the ambient ratios with 220 

specific PAH source signatures. However, PAHs are affected by different atmospheric 221 

processes and therefore the relative proportions of the PAH species are not conserved between 222 

the emission source and the receptor site10. It is known that ANTH, BaA and BaP are 223 

photochemically less stable in the atmosphere than PHEN, CHRY and BeP43,44. In the present 224 

study, DRs were used to assess the extent of photochemical degradation of the studied 225 

samples. Microbial degradation of PAHs that may change their isomer composition in 226 

background surface soils is deemed unlikely to have a substantial effect on the source 227 

apportionment results, considering the limited degradation observed in soils with high content 228 

of organic matter affected by diffuse PAH pollution45. The BaA/(BaA+CHRY) and 229 

BaP/(BeP+BaP) ratios ranged from 0.09 to 0.26 and from 0.13 to 0.44, respectively, and 230 

correlate positively (R2 = 0.90) (Table S2). Samples #1, #6 and #7 showed the largest 231 

observed DRs (BaA/(BaP+BeP)>0.40 and BaA/(BaA+CHRY)>0.26, Table S2), indicating 232 

that PAHs had been transported the shortest distance from the source. In contrast sample #10 233 

presented the lowest ratios, thus the largest distance to the source. 234 

 235 

Carbon Isotope Composition of PAHs in Soils. Compound-specific stable carbon isotope is 236 

used to apportion sources. Polycyclic aromatic hydrocarbon (PAH) extracts from all samples 237 

were analyzed for their stable carbon isotope composition (δ13C). The δ13C values ranged 238 

between -25.3‰ and -23.0‰ (-24.0 ± 0.1‰, µ±σ) (Table 1 and Table S3). No substantial 239 

variation was observed among sampling sites, which suggests a relatively homogenous 240 

source. However, there was a consistent δ13C variability between the different PAH 241 

compounds, with the PAH group BaA + TP + CHRY (m/z 228) having the highest δ13C 242 

values (-23.4 ± 0.3‰) and the PAH group IcdP+BghiP (m/z 276) having the lowest δ13C 
243 
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values (-24.6 ± 0.3‰) (Figure 2A). This suggests that generation processes differed for the 244 

different PAH molecules. During polyaromatization reactions, 13C is preferentially lost during 245 

C=C bond formation leading to a relative depletion in δ13C values46. However, no positive 246 

correlation was observed between molecular weight and δ13C values. Overall the δ13C values 247 

of the PAHs in the present study were comparable to those observed in aerosols from Chinese 248 

cities47 (-26.3 to -24.4‰ in Chongqing and Hangzhou and -25.5 to -23.5‰ in Beijing) and 249 

soils from a domestic coal-burning village near Glasgow, UK48 (-25‰). δ13C were, however, 250 

generally more enriched in 13C relative to ambient samples from other European countries 251 

such as Sweden15 (-28.9‰), Croatia20 (-29.2‰) or Greece20 (-29.0‰) and from archipelago 252 

sediments in Stockholm, Sweden14 (-27.0 to -24.8‰).       253 

The radiocarbon content was determined for only those samples with sufficient analyte 254 

concentrations (n = 7 sites). The determined ∆14C values ranged between -960‰ and -768‰ 255 

(-892 ± 37‰) (Table 1 and Table S4). The radiocarbon composition exhibited very low 256 

variability between different sampling sites and PAH compounds (Figure 2B), suggesting a 257 

relatively homogenous source, which is consistent with the 13C data. These highly depleted 258 

14C signatures confirm that PAHs in these Czech forest soils are of a mainly fossil fuel origin. 259 

Although the soil sample from Kosetice (#7) had slightly more modern carbon (less negative 260 

signal) (-819‰, Table 1), those samples with the highest concentrations of PAHs had ∆14C 261 

values reflecting the largest fossil fuel contribution (#1, #2, #5 and #6 with ∆14C ~ -942 and -262 

897‰, Table 1). Whereas the Czech border sites are mostly affected by long-range transport 263 

of pollutants from industrial regions, more local impact is expected in Kosetice (#7). This 264 

regional site belongs to an agricultural region with several small villages within 5-10 km in all 265 

directions where wood is usually burned for domestic heating. PAHs in Czech Republic had 266 

generally very high fossil contributions compared to PAHs from many other worldwide sites, 267 

e.g., rural and background sites in Sweden15,20 (-138 to +58‰ and -388 to -381‰, 268 
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respectively), western Balkans22 (-568 to -288‰) and even a residential area in Tokyo19 (-514 269 

to -787‰).However, the ∆14C-PAH values were similar to airborne PAHs from Croatia20 (-270 

888‰), Greece20 (-914‰), Alabama, US21 (-980‰) and sediments from Stockholm, 271 

Sweden14 (-891 to -709‰).        272 

Hydrogen Isotope Composition of PAHs in Soils. This is the first study complementing the 273 

earlier reported dual compound-specific carbon isotope system of PAHs14,15,22  with hydrogen 274 

stable isotopic analyses. The PAH extracts exhibited δ2H values between -263‰ and -53‰ (-275 

129 ± 44‰) (Table 1 and Table S5). In contrast to both carbon isotope systems (δ13C and 276 

∆14C), the deuterium system showed a higher variability among sampling sites. The western 277 

border soil (#1) had a relatively much more 2H-depleted value (-226‰) compared to #5 (δ2H 278 

~ 135‰) or the remaining studied soils (#2, #6, #7, #8 and #10, δ2H ~ -109‰). Other studies 279 

have suggested that deuterium enrichment takes place simultaneously with 13C depletion 280 

during PAH generation23. However, in the present study no correlation was found between 281 

PAH δ13C and δ2H values. Furthermore, no significant variability was observed between the 282 

δ2H values and the different PAHs (Figure 2A). Therefore, these data suggest that the 283 

relatively more 2H-depleted signature at site #1 reveals a PAH source different from the other 284 

soils. To date, there have been no other studies on δ2H values of PAHs in modern soils.  285 

Monte Carlo Simulations for Source Apportionment. The compound-specific triple-286 

isotope approach allowed elucidation of up to four different sources. In the present study three 287 

isotope signatures were analyzed, δ13C, ∆14C and δ2H, for PAHs in forest soils from the Czech 288 

Republic. The stable carbon isotope (δ13C) is a priori informative for source apportionment 289 

but it also has been shown that atmospheric photochemical processes can lead to 13C 290 

shifts49,50. However, O’Malley and collaborators evaluated the effects of evaporation, 291 

photodecomposition and microbial degradation on the δ13C values of individual PAHs and no 292 

significant alterations were observed12. Furthermore, in the present study, no correlation was 293 
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found between the diagnostic ratios for photochemical degradation (BaA to BaA + CHRY 294 

and BaP to BaP + BeP) and their respective δ13C values (Figure S1). Based on this analysis, 295 

carbon isotopic fractionation of PAHs during atmospheric transport was therefore likely 296 

insignificant and δ13C values were used to apportion PAH sources.  297 

The natural abundance of radiocarbon (∆14C) was utilized to differentiate between fossil fuel 298 

(-1000‰) versus combustion of contemporary sources (+137.5 ± 21.9‰) for PAHs. Stable 299 

carbon isotope ratio determinations of individual PAHs showed different δ13C values for the 300 

combustion of C3 terrestrial vegetation51-53 (e.g., wood, ~ -28.7‰) and liquid fossil fuels23,52,54 301 

(e.g., gasoline, ~ -24.1‰, diesel, ~ -26.5‰). Regarding the individual PAHs derived from 302 

coal combustion sources, δ13C values have been shown to vary over a wide range by ca. 303 

8‰17,23,52,55-57 (-31 to -23‰) and overlapping with C3 wood and liquid fossil fuel sources. The 304 

δ13C values of coal-derived PAHs are normally dictated by both the isotopic signature of the 305 

parent fuels and the temperature of combustion. In general, PAHs derived from carbonization 306 

processes at low temperatures (~650 ºC) have isotopic values similar to those of the parent 307 

coals17,52,58-60 (-25.4 to -21‰), because they are mainly primary devolatilisation products from 308 

mild combustion processes17. Instead, δ13C values of PAHs became lighter when the 309 

temperature of carbonization is higher (~900 ºC) because they are then products of 310 

condensation reactions, which result in a kinetic isotope effect with 12C-12C bonds forming 311 

more easily than 13C-12C bonds17,23,52,55 (-29.4 to -24.2‰).  312 

In contrast to their δ13C values, the δ2H values of PAHs generated by coal, biomass and liquid 313 

fuel pyrolysis differ substantially (e.g., liquid fossil fuels23,53, -76 to -47‰; C3 wood53 ~ -314 

94‰; high coal pyrolysis23, -81 to -65‰; bulk coals58,60, -170 to -87‰; and bulk peat61-63, -315 

240 to -79‰). However, only few source-specific δ2H values have been reported in the 316 

scientific literature to date. Therefore, in the future there is the need to better characterize the 317 

hydrogen isotopic signature of primary sources. Although δ2H literature values are currently 318 
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limited, the simultaneous use of δ13C, ∆14C and δ2H provide a greater differentiation and 319 

allowed quantitatively to apportion the relative contribution of four different combustion 320 

source classes to the PAH. Source-specific δ13C and δ2H values reported in literature are 321 

summarized in the Supporting Information (Table S1).  322 

The choice of sources to perform the Bayesian-based method (see Experimental Section) was 323 

based on existing bottom-up emission inventories and past PAH fingerprinting studies 324 

indicating the major sources of PAHs in the Czech Republic35,64-66. By combining the isotopic 325 

signatures of sample data and primary PAH sources in two-dimensional plots (Figures 326 

2A+B), the following four sources were chosen: combustion of liquid fuels, C3 wood 327 

combustion, as well as coal combustion at low (~650 ºC) and high (~900 ºC) temperatures. 328 

The isotopic signatures used for the primary PAHs sources are detailed in Table 2. 329 

Natural peat fires in the border mountainous Czech areas were a priori a potential source of 330 

PAHs in Czech Republic. However, the present PAH-isotope data did not support this 331 

hypothesis (Figure 2A+B). Furthermore, the soil from the northwestern part of the country 332 

(#1) had a hydrogen stable-isotope composition which was more depleted in 2H than the other 333 

samples and moreover, did not match any of the primary sources explored for δ2H values of 334 

PAHs in the literature to date (Figure 2A+B). Shifts in the δ2H values of organic molecules 335 

have been observed as a result of many degradation processes with potentially quite large 336 

enrichment factors67. However, such deuterium fractionation is generally accompanied with a 337 

shift also in the δ13C values, which was not observed in the case of sample #1. It is worth 338 

noting here that the lack of reported source-specific data for the hydrogen isotope composition 339 

makes it difficult to draw other interpretations of sample #1. As a result, sample #1 was not 340 

considered for the Bayesian-based data analysis due to the inability to associate its δ2H values 341 

to either a primary source or a degradation process. Nevertheless, the results of the 342 

radiocarbon analyses of site #1 enabled the calculation of the relative contributions of the 343 
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combined fossil fuel sources versus contemporary biomass using a simple isotopic mass 344 

balance equation as described elsewhere14 (Table 3 and Figure 3B).   345 

The compound-specific isotope ratios for every site were combined with literature values for 346 

source end members in a mass balance-based source-apportionment scheme. The variability 347 

of the isotopic source signatures were accounted for within a Bayesian Markov Chain Monte 348 

Carlo framework. Four probability density functions, one for every source, were obtained for 349 

every group of PAHs and site (#2, #5, #6, #7, #8 and #10), as is shown at Figure 3A for the 350 

group BbF+BjF+BkF and site#7. All samples showed a similar source pattern with the highest 351 

contribution coming from the coal combustion at low temperature, ranging from 53 to 75% 352 

(61±8%, Table 3 and Figure 3B). Practically equal contributions from liquid fossil fuels and 353 

coal combustion at high temperature were also observed for all samples (16 ± 3% and 13 ± 354 

2%, respectively). Biomass combustion was the least important source of PAHs in Czech 355 

Republic soils, with contributions ranging between 5 to 16% (9 ± 3%). Only small differences 356 

were observed between samples, but those soils with the highest PAH concentrations from the 357 

northwestern (#1 and #2) and the eastern border (#5 and #6) regions had slightly higher coal-358 

related contributions (Figure 3B, high + low temperatures coal combustion ~ 74-85% and 359 

biomass ~ < 9%). Correspondingly, soils from Kosetice and the southern region had slightly 360 

higher biomass contributions (#7, #8 and #10, biomass ~ 10-16% and coal ~ 66-74%). 361 

Although some soil sites were placed relatively close to potential PAH point sources and 362 

showed higher PAH concentrations, the triple-isotope-based apportionment demonstrated that 363 

the contribution from the four different source classes were rather homogeneous for 364 

mountainous forest soils across the country. The low observed biomass contributions (9 ± 365 

3%) in Czech background soils are similar to those observed in South Europe, such as in 366 

background air from Croatia and Greece20 (9% and 7%, respectively), but lower than those in 367 

North Europe (i.e. Sweden20, 50%)  368 
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Coal combustion at low and high temperatures may be associated to domestic and industrial 369 

emissions, respectively. Additionally, combustion of fuels at low temperature has the 370 

potential to result in higher PAH emissions than high-temperature combustion sources (i.e. 371 

the lower is the combustion temperature, higher are the PAHs emission factors4). These high 372 

emission factors might explain the high contribution coming from low-temperature coal 373 

combustion sources in Czech Republic. However, the household coal usage represents only 374 

the 3% of the total coal production in the Czech Republic68. Furthermore, the residential coal 375 

burning represents one of the most toxic sources of PAHs due to both high emission rates and 376 

proximity to population35. Emission inventories show a reduction of PAH emissions in recent 377 

years in almost all European countries, being the residential sector the most important source 378 

of PAHs nowadays35. In 2007, residential emissions (including fossil and non-fossil sources) 379 

accounted for the 47.5% of the total PAH emissions in Europe35. The present study shows like 380 

the residential sector in Czech Republic, in particular the residential coal burning, may be 381 

more important than the European average. Taken together, PAHs in Czech soils are heavily 382 

influenced by coal combustion practices (75%), mainly coming from household emissions 383 

(61%). 384 

The present study demonstrates firstly that triple isotope characterization of PAHs is possible 385 

and secondly, that this information is useful for source characterization. However, the existing 386 

literature on isotope characterization of PAHs is currently limited. We think and hope that the 387 

current contribution may encourage researchers to expand the existing source database. Such 388 

work should seek to both improve the statistics for the currently investigated sources, but also 389 

expand the number of source categories in terms of their geographical prevalence. 390 

  391 
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This information is available free of charge via the Internet at http://pubs.acs.org. 618 
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Table 1. PAH concentrations and average carbon (∆
14

C and δ
13

C) and hydrogen (δ
2
H) values of PAHs in forest soils  

Sample ID Site Longitude Latitude 
Altitude  

(m a.s.l.
a
) 

ƩPAH
b
  

(µg·g
-1

 

d.w.
c
) 

δ
2
H  

(‰) 

δ
13

C  

(‰) 

∆
14

C  

(‰) 

#1 Krušné hory-Červená jáma 13° 27.702’ 50° 33.804’ 840 7.35 -225.8 ± 4.9 -24.18 ± 0.10 -911 ± 87 

#2 Lužické hory-Jedlová 14° 33.035’ 50° 51.939’ 520 5.52 -116.6 ± 3.4 -24.04 ± 0.17 -897 ± 19 

#3 Krkonoše-Pašerácký chodník 15° 45.933’ 50° 44.416’ 1320 2.61  -24.13 ± 0.14  

#4 Jeseníky-Jelení loučky 17° 15.544’ 50° 8.867’ 1120 2.49  -23.81 ± 0.20  

#5 Beskydy-Kykulka 18° 26.447’ 49° 34.523’ 930 9.11 -135.5 ± 23.9 -23.94 ± 0.09 -942 ± 24 

#6 Javorníky-Kohútka 18° 12.756’ 49° 17.713’ 811 5.88 -108.6 ± 3.1 -24.04 ± 0.14 -905 ± 18 

#7 Košetice 15° 05.476’ 49° 34.231’ 495 0.872 -99.3 ± 10.6 -24.13 ± 0.17 -819 ± 14 

#8 Novohradské hory-Vysoká 14° 44.141’ 48° 42.808’ 971 3.81 -112.8 ± 3.1 -24.05 ± 0.26 -884 ± 17 

#9 Šumava-Boubín 13° 49.018’ 49° 0.026’ 1120 0.532  -23.97 ± 0.22  

#10 Český les-Čerchov 12° 46.813’ 49° 22.946’ 985 4.80 -107.0 ± 3.8 -24.19 ± 0.22 -886 ± 14 

    Average±stdev 4.30 ± 2.77 -129.4 ± 44 -24.05 ± 0.12 -892 ± 37 

a above sea level 

b sum of 14 PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, triphenylene, chrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, 
benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene 

c dry weight 
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Table 2. Isotopic signatures (end members) for the primary PAHs sources
a
  

Primary Source/ Isotope (mean±stdev, ‰ ) δ
13

C  δ
2
H ∆

14
C 

C3 plant combustionb -28.7 ± 1.4 -94 ± 3 +137.5 ± 21.9 

Liquid fossil fuel combustionc -25.3 ± 1.6 -62 ± 7.3 -1000 ± 0 

Coal pyrolysis at low temperature (~650 ºC)d -23.2 ± 1.1 -129 ± 20.8 -1000 ± 0 

Coal pyrolysis at high temperature (~900 ºC)e -26.8 ± 1.3 -73.2 ± 4.0 -1000 ± 0 

a See Table S1 and Text S2 with a literature compilation of isotopic signatures and calculation of the primary PAH sources 
end members, respectively 
b δ13C and δ2H values for biomass were calculated as the average between PAH-specific and bulk signatures found in the 
literature. Three and one literature sources were used for δ13C and δ2H, respectively. ∆14C for biomass was calculated 
assuming equal contributions of fresh biomass (+50‰) and wood (+225‰). 
c δ13C and δ2H values were calculated assuming equal contributions from diesel and gasoline sources. Five and two 
literature sources were used for δ13C and δ2H, respectively. 
d δ2H and δ13C values reported for bulk coal were used as δ2H-PAH and δ13C-PAH signatures for coal combustion at low 
temperature assuming that the PAHs derived from carbonization processes at low temperatures have isotopic values similar 
to those of the parent coals. Seven and three literature sources were used for δ13C and δ2H, respectively. 
e Four and one literature sources were used for δ13C and δ2H, respectively. 
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Table 3. Source contributions of liquid fossil fuel combustion, coal combustion at low and high temperature and biomass combustion 

for the ΣPAH14 in forest soils based on a four-source Bayesian Markov Chain Monte Carlo statistical mass-balance model (mean ± 

stdev) 

Sample ID 
fliquid fossil fuel 

(%) 

flow T coal 

(%) 

fhigh T coal 

(%) 

fbiomass 

(%) 

f coal 

(f low T coal + f high T coal)  

(%) 

f fossil 

(f low T coal + f high T coal + 

fliquid fossil fuel)  
(%) 

#1    7.9  92.1 

#2  15.4 ± 10.3 62.3 ± 10.4 13.2 ± 9.6 9.1 ± 0.2 75.6 ± 10.3 90.9 ± 17.5 

#5  9.6 ± 7.3 75.2 ± 8.8 10.1 ± 7.6 5.1 ± 0.1 85.3 ± 7.3 94.9 ± 13.8 

#6  17.4 ± 11.6 59.7 ± 11.2 14.5 ± 11.0 8.4 ± 0.2 74.2 ± 11.6 91.6 ± 19.5 

#7  17.9 ± 12.3 53.1 ± 12.1 13.2 ± 10.6 15.9 ± 0.3 66.2 ± 12.5 84.1 ± 20.4 

#8  15.3 ± 10.6 61.3 ± 10.5 13.2 ± 9.6 10.2 ± 0.2 74.5 ± 10.6 89.8 ± 17.7 

#10  17.7 ± 11.9 56.7 ± 11.4 15.6 ± 11.0 10.0 ± 0.2 72.3 ± 11.9 90.0 ± 19.8 

Average  15.6 ± 3.1 61.4 ± 7.6 13.3 ± 1.8 9.5 ± 3.3 74.7 ± 6.2 90.2 ± 3.5 
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FIGURE CAPTIONS 

Figure 1. Map depicting bottom-up emission inventory of total 16 PAHs in 2007 (grid 0.1° x 

0.1°)35. The sampling sites are indicated with white triangles.  

Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 

(circles), #5 (diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): 

δ2H versus δ13C, where symbol colors are based on PAH molecular weight: m/z 178 (dark 

blue), m/z 202 (light blue), m/z 228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel 

(B): δ2H versus ∆14C, where symbol colors are based on PAH concentrations. Isotopic 

signatures of primary sources of PAH are shown: biomass combustion (green), peat (light 

grey), liquid fossil fuel combustion (black), high temperature coal combustion (“high-T coal”, 

brown) and low temperature coal combustion (“low-T coal”, dark grey). Isotopic signatures 

on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: 

phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLU), pyrene (PYR), 

benz[a]anthracene (BaA), chrysene (CHRY), benzo[b]fluoranthene (BbF), 

benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), benzo[e]pyrene (BeP), 

benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP).  

Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs 

benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid 

fuel + coal), liquid fossil fuel, coal combustion at low and high temperature and biomass 

combustion for the sum of PAHs in forest soils from Czech Republic (Panel B). 
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Coal pyrolysis at high temperature (~900 ºC)? Coal pyrolysis at low temperature (~650 ºC)? 
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Figure 1. Map depicting bottom-up emission inventory of total 16 PAHs in 2007 (grid 0.1° x 0.1°)35. The 
sampling sites are indicated with white triangles.  
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Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 (circles), #5 
(diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): δ2H versus δ13C, 
where symbol colors are based on PAH molecular weight: m/z 178 (dark blue), m/z 202 (light blue), m/z 

228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel (B): δ2H versus ∆14C, where symbol 
colors are based on PAH concentrations. Isotopic signatures of primary sources of PAH are shown: biomass 

combustion (green), peat (light grey), liquid fossil fuel combustion (black), high temperature coal 
combustion (“high-T coal”, brown) and low temperature coal combustion (“low-T coal”, dark grey). Isotopic 

signatures on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: 
phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLU), pyrene (PYR), benz[a]anthracene (BaA), 
chrysene (CHRY), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), 

benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP).  
152x114mm (300 x 300 DPI)  
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Figure 2. Two-dimensional dual-isotope presentation of PAH in forest soils from sites #1 (circles), #5 
(diamonds), #6 (triangles) and average of #2, #7, #8 and #10 (squares). Panel (A): δ2H versus δ13C, 
where symbol colors are based on PAH molecular weight: m/z 178 (dark blue), m/z 202 (light blue), m/z 

228 (green), m/z 252 (yellow and orange), m/z 276 (red); Panel (B): δ2H versus ∆14C, where symbol 
colors are based on PAH concentrations. Isotopic signatures of primary sources of PAH are shown: biomass 

combustion (green), peat (light grey), liquid fossil fuel combustion (black), high temperature coal 
combustion (“high-T coal”, brown) and low temperature coal combustion (“low-T coal”, dark grey). Isotopic 

signatures on primary sources are based on reported literature values (Tables 2 and S1). Abbreviations: 
phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLU), pyrene (PYR), benz[a]anthracene (BaA), 
chrysene (CHRY), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), 

benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), benzo[ghi]perylene (BghiP).  
152x114mm (300 x 300 DPI)  
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Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs 
benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid fuel + coal), 

liquid fossil fuel, coal combustion at low and high temperature and biomass combustion for the sum of PAHs 

in forest soils from Czech Republic (Panel B).  
148x111mm (96 x 96 DPI)  
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Figure 3. Probability density functions (pdf) of the relative source contribution of PAHs 
benzo[b+j+k]fluoranthene for Sample #7 (Panel A) and source contributions of fossil (liquid fuel + coal), 

liquid fossil fuel, coal combustion at low and high temperature and biomass combustion for the sum of PAHs 

in forest soils from Czech Republic (Panel B).  
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