247 research outputs found

    Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer

    Get PDF
    Skin cancer is among the most common cancer types accompanied by rapidly increasing incidence rates, thus making the development of more efficient therapeutic approaches a necessity. Recent studies have revealed the potential role of decosahexaenoic acid ester of phloridzin (PZDHA) in suppressing proliferation of liver, breast, and blood cancer cell lines. In the present study, we investigated the cytotoxic potential of PZDHA in an in vitro model of skin cancer consisting of melanoma (A375), epidermoid carcinoma (A431), and non-tumorigenic (HaCaT) cell lines. Decosahexaenoic acid ester of phloridzin led to increased cytotoxicity in all cell lines as revealed by cell viability assays. However, growth inhibition and induction of both apoptosis and necrosis was more evident in melanoma (A375) and epidermoid carcinoma (A431) cells, whereas non-tumorigenic keratinocytes (HaCaT) appeared to be more resistant as detected by flow cytometry. More specifically, PZDHA-induced cell cycle growth arrest at the G2/M phase in A375 and A431 cells in contrast to HaCaT cells, which were growth arrested at the G0/G1 phase. Elevated intracellular generation of reactive oxygen species ROS was detected in all cell lines. Overall, our findings support the potential of PZDHA as a novel therapeutic means against human skin cancer

    Stbd1-deficient mice display insulin resistance associated with enhanced hepatic ER-mitochondria contact

    Get PDF
    Starch binding domain-containing protein 1 (STBD1) is an endoplasmic reticulum (ER)-resident, glycogen-binding protein. In addition to glycogen, STBD1 has been shown to interact with several proteins implicated in glycogen synthesis and degradation, yet its function in glycogen metabolism remains largely unknown. In addition to the bulk of the ER, STBD1 has been reported to localize at regions of physical contact between mitochondria and the ER, known as Mitochondria-ER Contact sites (MERCs). Given the emerging correlation between distortions in the integrity of hepatic MERCs and insulin resistance, our study aimed to delineate the role of STBD1 in vivo by addressing potential abnormalities in glucose metabolism and ER-mitochondria communication associated with insulin resistance in mice with targeted inactivation of Stbd1 (Stbd1KO). We show that Stbd1KO mice at the age of 24 weeks displayed reduced hepatic glycogen content and aberrant control of glucose homeostasis, compatible with insulin resistance. In line with the above, Stbd1-deficient mice presented with increased fasting blood glucose and insulin levels, attenuated activation of insulin signaling in the liver and skeletal muscle and elevated liver sphingomyelin content, in the absence of hepatic steatosis. Furthermore, Stbd1KO mice were found to exhibit enhanced ER-mitochondria association and increased mitochondrial fragmentation in the liver. Nevertheless, the enzymatic activity of hepatic respiratory chain complexes and ER stress levels in the liver were not altered. Our findings identify a novel important role for STBD1 in the control of glucose metabolism, associated with the integrity of hepatic MERCs

    Serum Soluble TACI, a BLyS Receptor, Is a Powerful Prognostic Marker of Outcome in Chronic Lymphocytic Leukemia

    No full text
    BLyS is involved in CLL biology and its low soluble serum levels related to a shorter time to first treatment (TFT). TACI is a BLyS receptor and can be shed from cells' surface and circulate in soluble form (sTACI). We investigated the impact of serum BLyS and sTACI levels at diagnosis in CLL patients and their relationship with disease parameters and patients' outcome. Serum BLyS was determined in 73 patients, while sTACI in 60. Frozen sera drawn at diagnosis were tested by ELISA. sTACI concentrations correlated with BLyS ( = −0.000021), b2-microglobulin ( = 0.005), anemia ( = −0.03), thrombocytopenia ( = 0.04), Binet stage ( = 0.02), and free light chains ratio ( = 0.0003). Soluble BLyS levels below median and sTACI values above median were related to shorter TFT ( = 0.0003 and 0.007). During a ten-year followup, sTACI levels, but not BLyS, correlated with survival ( = 0.048). In conclusion, we confirmed the prognostic significance of soluble BLyS levels with regard to TFT in CLL patients, and, more importantly, we showed for the first time that sTACI is a powerful prognostic marker, related to parameters of disease activity and staging and, more importantly, to TFT and OS

    Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy

    Get PDF
    Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL

    Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations and clinical impact

    Get PDF
    Recent evidence suggests that complex karyotype (CK) defined by the presence of 653 chromosomal aberrations (structural and/or numerical) identified by chromosome banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges towards routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with 655 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcome, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and or TP53 mutations, TP53abs) and the expression of somatically hypermutated (M-CLL) or unmutated (U-CLL) immunoglobulin heavy variable genes (IGHV). Thus, they contrasted CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs and IGHV gene somatic hypermutation status, we propose a novel hierarchical model where patients with high-CK exhibit the worst prognosis, while M-CLL lacking CK or TP53abs as well as CK with +12,+19 show the longest overall survival. In conclusion, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with 655 chromosomal aberrations emerges as prognostically adverse, independently of other biomarkers. Prospective clinical validation is warranted before finally incorporating high-CK in risk stratification of CLL

    Seagrass beds distribution along the Mediterranean coasts. Mediterranean Sensitive Habitats (MEDISEH) Final Report, DG MARE Specific Contract SI2.600741.

    Get PDF
    Based on the following Terms of Reference (TOR) of the content of the European Commission DG MARE request Ares (2011)665688: “Compile information supporting the identification and location of nursery areas (juveniles in their first and, if appropriate, second year of life) and spawning aggregations. This information, which is to be collated and archived in formats adequate for GIS rendering, shall refer to all the demersal and small pelagic species in the Mediterranean included in Appendix VII of Council Regulation (EC) No 199/2008 as well as for the species subject to minimum size (Council Regulation (EC) No 1967/2006-Annex III). In addition, ecological characterisation of these areas, both in terms of biological community (assemblage) and habitats therein, must be provided.” The technical tender form of the Specific Contract 2 (MEDISEH) defined the following objectives: Review of historical and current data on the locations and the status of seagrass beds, coralligenous and mäerl beds in different GSAs (Geographical Sub-Areas amending amending the Resolution GFCM/31/2007/2) all over the Mediterranean basin. Transform the information into a digitilized format within the framework of a geodatabase Review and map of all existing specific Marine Protected Areas (MPAs) in the Mediterranean area as well as areas that are under any form of national or international regulation. Identify and map suitable areas for Posidonia, coralligenous and mäerl communities by developing habitat distribution models at different spatial scales. Review and map all existing information on historical and current data of nurseries and spawning grounds of certain small pelagic (i.e., Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus spp.) and demersal species (i.e., Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa) that are included in the Data Collection Framework for the Mediterranean and subjected to minimum landing size based on Council Regulation No 1967/2006-Annex II. Analyze existing survey data and apply spatial analysis techniques in order to identify locations that are more likely to be density hot spot areas or are being more suitable for fish nurseries and spawning grounds for Engraulis encrasicolus, Sardina pilchardus, Scomber spp., Trachurus trachurus, Aristaeomorpha foliacea, Aristeus antennatus, Merluccius merluccius, Mullus barbatus, Mullus surmuletus, Nephrops norvegicus, Parapenaeus longirostris, Pagellus erythrinus, Galeus melastomus, Raja clavata, Illex coindetti, Eledone cirrosa These areas will also be characterized from an environmental and ecological perspective upon data availability. Integrate and present the aforementioned information through a Web-based GIS viewer with an associated geo-referenced database that will operate as a consulting tool for spatial management and conservation planning. Following the revision of the knowledge base, to identify gaps and suggest future research priorities. In order to meet these objectives, an expert team was composed within the MAREA Consortium from scientists with established expertise in the different topics required, and working in different areas of the Mediterranean basin. The team formed to execute the project includes the main Institutes of EU countries in the Mediterranean, all having solid reputations in the fields covered. The participating Institutes/Entities operate in the Western, Central and Eastern parts of the Mediterranean basin, and this ensures familiarity with the geographical areas that are related to the specific tendering. Moreover, a large number of scientists outside of the MAREA Consortium collaborated on a volunteer basis with data and other input. Details on the list of experts and external collaborators can be found in each Work Package in the present report. For CV details, check the MAREA expert web-site http://www.mareaproject.net

    The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells

    Get PDF
    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood

    SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways

    Get PDF
    Changes in cellular ion levels can modulate distinct signaling networks aimed at correcting major disruptions in ion balances that might otherwise threaten cell growth and development. Salt-inducible kinase 1 (SIK1) and salt overly sensitive 2 (SOS2) are key protein kinases within such networks in mammalian and plant cells, respectively. In animals, SIK1 expression and activity are regulated in response to the salt content of the diet, and in plants SOS2 activity is controlled by the salinity of the soil. The specific ionic stress (elevated intracellular sodium) is followed by changes in intracellular calcium; the calcium signals are sensed by calcium-binding proteins and lead to activation of SIK1 or SOS2. These kinases target major plasma membrane transporters such as the Na+,K+-ATPase in mammalian cells, and Na+/H+ exchangers in the plasma membrane and membranes of intracellular vacuoles of plant cells. Activation of these networks prevents abnormal increases in intracellular sodium concentration

    The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    Get PDF
    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis

    Stereotypical Chronic Lymphocytic Leukemia B-Cell Receptors Recognize Survival Promoting Antigens on Stromal Cells

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Survival of CLL cells depends on their close contact with stromal cells in lymphatic tissues, bone marrow and blood. This microenvironmental regulation of CLL cell survival involves the stromal secretion of chemo- and cytokines as well as the expression of adhesion molecules. Since CLL survival may also be driven by antigenic stimulation through the B-cell antigen receptor (BCR), we explored the hypothesis that these processes may be linked to each other. We tested if stromal cells could serve as an antigen reservoir for CLL cells, thus promoting CLL cell survival by stimulation through the BCR. As a proof of principle, we found that two CLL BCRs with a common stereotyped heavy chain complementarity-determining region 3 (previously characterized as “subset 1”) recognize antigens highly expressed in stromal cells – vimentin and calreticulin. Both antigens are well-documented targets of autoantibodies in autoimmune disorders. We demonstrated that vimentin is displayed on the surface of viable stromal cells and that it is present and bound by the stereotyped CLL BCR in CLL-stroma co-culture supernatant. Blocking the vimentin antigen by recombinant soluble CLL BCR under CLL-stromal cell co-culture conditions reduces stroma-mediated anti-apoptotic effects by 20–45%. We therefore conclude that CLL BCR stimulation by stroma-derived antigens can contribute to the protective effect that the stroma exerts on CLL cells. This finding sheds a new light on the understanding of the pathobiology of this so far mostly incurable disease
    corecore