17 research outputs found

    Surveillance of alloantibodies after transplantation identifies the risk of chronic rejection

    Get PDF
    The monitoring of the levels of alloantibodies following transplantation might facilitate early diagnosis of chronic rejection (CR), the leading cause of renal allograft failure. Here, we used serial alloantibody surveillance to monitor patients with preoperative positive flow cytometric crossmatch (FCXM). Sixty-nine of 308 renal transplant patients in our center had preoperative positive FCXM. Blood was collected quarterly during the first postoperative year and tested by FCXM and single antigen bead luminometry, more sensitive techniques than complement-dependent cytotoxic crossmatching. Distinct post-transplant profiles emerged and were associated with different clinical outcomes. Two-thirds of patients showed complete elimination of FCXM and solid-phase assay reactions within 1 year, had few adverse events, and a 95% 3-year graft survival. In contrast, the remaining third failed to eliminate flow FCXM or solid-phase reactions directed against HLA class I or II antibodies. The inferior graft survival (67%) with loss in this latter group was primarily due to CR. Thus, systematic assessment of longitudinal changes in alloantibody levels, either by FCXM or solid-phase assay, can help identify patients at greater risk of developing CR

    ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: Summary Article: A Report of the American College of Cardiology/American HeartAssociation Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography)

    Get PDF
    "The previous guideline for the use of echocardiography was published in March 1997. Since that time, there have been significant advances in the technology of echocardiography and growth in its clinical use and in the scientific evidence leading to recommendations for its proper use. Each section has been reviewed and updated in evidence tables, and where appropriate, changes have been made in recommendations. A new section on the use of intraoperative transesophageal echocardiography (TEE) is being added to update the guidelines published by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists. There are extensive revisions, especially of the sections on ischemic heart disease; congestive heart failure, cardiomyopathy, and assessment of left ventricular (LV) function; and screening and echocardiography in the critically ill. There are new tables of evidence and extensive revisions in the ischemic heart disease evidence tables. Because of space limitations, only those sections and evidence tables with new recommendations will be printed in this summary article. Where there are minimal changes in a recommendation grouping, such as a change from Class IIa to Class I, only that change will be printed, not the entire set of recommendations. Advances for which the clinical applications are still being investigated, such as the use of myocardial contrast agents and three-dimensional echocardiography, will not be discussed.

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Post-transplant antibody levels predict risk of graft rejection

    No full text
    corecore