95 research outputs found

    Platelet-derived serotonin links vascular disease and tissue fibrosis

    Get PDF
    Blocking 5-HT2B receptor provides a therapeutic target for fibrotic diseases caused by activated platelet release of serotonin during vascular damage

    NR4A Receptors Differentially Regulate NF-κB Signaling in Myeloid Cells

    Get PDF
    Dysregulation of inflammatory responses is a hallmark of multiple diseases such as atherosclerosis and rheumatoid arthritis. As constitutively active transcription factors, NR4A nuclear receptors function to control the magnitude of inflammatory responses and in chronic inflammatory disease can be protective or pathogenic. Within this study, we demonstrate that TLR4 stimulation using the endotoxin lipopolysaccharide (LPS) rapidly enhances NR4A1–3 expression in human and murine, primary and immortalized myeloid cells with concomitant gene transcription and protein secretion of MIP-3α, a central chemokine implicated in numerous pathologies. Deficiency of NR4A2 and NR4A3 in human and murine myeloid cells reveals that both receptors function as positive regulators of enhanced MIP-3α expression. In contrast, within the same cell types and conditions, altered NR4A activity leads to suppression of LPS-induced MCP-1 gene and protein expression. An equivalent pattern of inflammatory gene regulation is replicated in TNFα-treated myeloid cells. We show that NF-κB is the critical regulator of NR4A1–3, MIP-3α, and MCP-1 during TLR4 stimulation in myeloid cells and highlight a parallel mechanism whereby NR4A activity can repress or enhance NF-κB target gene expression simultaneously. Mechanistic insight reveals that NR4A2 does not require DNA-binding capacity in order to enhance or repress NF-κB target gene expression simultaneously and establishes a role for NF-κB family member Relb as a novel NR4A target gene involved in the positive regulation of MIP-3α. Thus, our data reveal a dynamic role for NR4A receptors concurrently enhancing and repressing NF-κB activity in myeloid cells leading to altered transcription of key inflammatory mediators

    S.6.1 β-catenin is a central mediator in SSc

    Get PDF
    Background. β-catenin is the central integrator of canonical Wnt signalling. Since recent evidence suggests a central role of Wnts in fibrosis, we examined the β-catenin/Wnt pathway in SSc and focused on the role of β-catenin in fibroblast activation. Methods. We performed qPCR for several Wnt ligands and axin-2 to examine Wnt expression in SSc skin. We further studied protein levels of Wnt-1, -4, -10b and β-catenin by IHC. To establish the effects of β-catenin/Wnt signalling on collagen release, we created mice with fibroblast-specific stabilization of β-catenin (dEx3 β-catenin (wt/fl) × Col1a2; Cre-ER) as well as mice carrying fibroblast-specific deletion of β-catenin [Ctnnb1(fl/fl) × Col1a2; Cre-ER]. Summary of the results. We could demonstrate mRNA overexpression of Wnt-1, -2, -9a, -9b, -10a, -10b and -16 in SSc skin. Wnt-1, -4 and -10b consistently showed strong expression in SSc skin when compared with healthy skin. On protein level, however, Wnt-4 was indistinguishable between SSc patients and healthy controls, whereas Wnt-1 and Wnt-10b protein levels were increased in SSc skin. The overexpression of Wnt-1 and Wnt-10b resulted in a prominent nuclear accumulation of β-catenin in fibroblasts. Finally, increased mRNA levels of the target gene axin-2 confirmed the activation of canonical Wnt signalling. In dEx3 β-catenin (wt/ex) mice, we addressed the consequences of enhanced Wnt signalling and increased accumulation of β-catenin in SSc. We selectively targeted β-catenin in fibroblasts. Cre-activated dEx3 β-catenin (wt/fl) × Col1a2; Cre-ER mice showed massive and spontaneous dermal thickening even 2 weeks after Cre activation. Eight weeks after Cre-activation, skin thickening cumulated at 102.6% (P < 0.001). In line with the dermal thickening, hydroxyproline content and myofibroblast counts showed strong increases. To test the therapeutic potential of targeting β-catenin/Wnt signaling, we created Ctnnb1(fl/fl) x Col1a2;Cre-ER mice to specifically delete β-catenin in fibroblasts. After Cre activation and β-catenin deletion in fibroblasts, mice were challenged with bleomycin subcutaneously for 4 weeks. We found that Cre-activated Ctnnb1(fl/fl) × Col1a2; Cre-ER mice were protected from bleomycin-induced dermal with a reduction of skin thickening by 71% (P < 0.05). Conclusions. We demonstrated a prominent activation of canonical Wnt signalling in SSc with nuclear accumulation of β-catenin in fibroblasts and activation of the target gene axin-2. Our results showed that fibroblast-specific stabilization of β-catenin resulted in enhanced collagen release, whereas deletion of β-catenin potently reduced collagen production. Together, our findings highlight a key role of β-catenin in fibroblast activation and fibrosis. Thus, β-catenin may be promising molecular target for anti-fibrotic therapie

    Fixing a feedback loop in fibrosis

    No full text

    Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis

    Full text link
    BACKGROUND Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. METHODS Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth factor-β (TGF-β) receptor I (TBRIact). RESULTS The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-β-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-β with increased Smad reporter activity, elevated transcription of TGF-β target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-β/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. CONCLUSIONS We identified Sirt1 as a crucial regulator of TGF-β/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-β signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-β signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc

    Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway

    Full text link
    OBJECTIVE: Glycogen synthase kinase 3β (GSK-3) regulates the phosphorylation and subsequent degradation of β-catenin, thereby preventing aberrant activation of the canonical Wnt pathway. A study was undertaken to define the role of GSK-3 in fibroblast activation and in experimental models of systemic sclerosis (SSc). METHODS: siRNA and specific inhibitors were used to inhibit GSK-3 in cultured fibroblasts and in mice. Activation of the canonical Wnt signalling was analysed by determining the levels of nuclear β-catenin and by measuring the mRNA levels of the Wnt target gene Axin2. The effects of GSK-3 on the release of collagen were evaluated in human dermal fibroblasts and in the mouse model of bleomycin-induced skin fibrosis in tight-skin-1 (tsk-1) mice. RESULTS: Targeting GSK-3 potently activated the canonical Wnt pathway in fibroblasts in vitro and in vivo. Inactivation of GSK-3 dose-dependently stimulated the release of collagen from cultured fibroblasts in a β-catenin-dependent manner and further resulted in progressive accumulation of collagen and dermal thickening in mice. Inhibition of GSK-3 aggravated experimental fibrosis in bleomycin-challenged mice and in tsk-1 mice. CONCLUSION: Inhibition of GSK-3 activates the canonical Wnt pathway in fibroblasts, stimulates the release of collagen from fibroblasts, exacerbates experimental fibrosis and is sufficient to induce fibrosis. GSK-3 is therefore a key regulator of the canonical Wnt signalling in fibroblasts and inhibition of GSK-3 results in fibroblast activation and increased release of collagen

    The transcription factor JunD mediates transforming growth factor {beta}-induced fibroblast activation and fibrosis in systemic sclerosis

    Full text link
    OBJECTIVES: Transforming growth factor β (TGFβ) has been identified as a key player in fibrotic diseases. However, the molecular mechanisms by which TGFβ activates fibroblasts are incompletely understood. Here, the role of JunD, a member of the activator protein 1 (AP-1) family of transcription factors, as a downstream mediator of TGFβ signalling in systemic sclerosis (SSc), was investigated. METHODS: The expression of JunD was analysed by real-time PCR, immunofluorescence, western blotting and immunohistochemistry. The canonical Smad pathway was specifically targeted by small interfering (si)RNA. The expression of extracellular matrix proteins in JunD deficient (JunD(-/-)) fibroblasts was analysed by real-time PCR and hydroxyproline assays. The mouse model of bleomycin-induced dermal fibrosis was used to assess the role of JunD in experimental fibrosis. RESULTS: JunD was overexpressed in SSc skin and in cultured fibroblasts in a TGFβ dependent manner. The expression of JunD colocalised with pSmad 3 in fibrotic skin and silencing of Smad 3 or Smad 4 by siRNA prevented the induction of JunD by TGFβ. JunD(-/-) fibroblasts were less responsive to TGFβ and released less collagen upon stimulation with TGFβ. Moreover, JunD(-/-) mice were protected from bleomycin-induced fibrosis with reduced dermal thickening, decreased myofibroblast counts and lower collagen content of lesional skin. CONCLUSIONS: These data demonstrate that JunD is overexpressed in SSc and that JunD is a mediator of the profibrotic effects of TGFβ. Considering that inhibitors of AP-1 signalling have recently been developed and are available for clinical trials in SSc, these findings may have translational implications

    Inactivation of fatty acid amide hydrolase exacerbates experimental fibrosis by enhanced endocannabinoid-mediated activation of CB1

    Full text link
    BACKGROUND: Selective targeting of the cannabinoid receptors CB1 and CB2 by synthetic compounds has revealed opposing roles of both receptors in fibrosis. OBJECTIVES: To characterise the role of endogenous cannabinoids (endocannabinoids) and their predominant receptor in fibrosis. METHODS: The levels of endocannabinoids in mice were modulated by pharmacological or genetic inactivation of the enzyme fatty acid amide hydrolase (FAAH). The predominant receptor for endocannabinoids was determined by selective inhibition of either CB1 or CB2. The extent of fibrosis upon challenge with bleomycin was determined by quantification of dermal thickness, hydroxyproline content and myofibroblast counts. RESULTS: The expression of FAAH is decreased in systemic sclerosis fibroblasts. FAAH-deficient mice with strongly increased levels of endocannabinoids were more sensitive to bleomycin. Consistently, pharmacological inhibition of FAAH significantly exacerbated bleomycin-induced fibrosis. Inhibition of CB1 completely abrogated the profibrotic effects of FAAH inactivation. In contrast, inhibition of CB2 only modestly enhanced fibrosis, indicating that CB1 is the predominant receptor for endocannabinoids in experimental fibrosis. CONCLUSIONS: Increased levels of endocannabinoids induced by inactivation of FAAH worsen experimental fibrosis via activation of CB1. These findings highlight the profibrotic effects of endocannabinoids and suggest that CB1 maybe a more promising candidate for targeted treatments in fibrotic diseases than CB2

    Activating transcription factor 3 regulates canonical TGFβ signalling in systemic sclerosis

    Full text link
    BACKGROUND Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS Transforming growth factor-β (TGFβ) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFβ, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFβ. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFβ and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFβ receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFβ on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc
    corecore