437 research outputs found

    Use of Computer Experiments to Study the Current Collected by Cylindrical Langmuir Probes

    Get PDF
    A particle-in-cell simulation has been developed to study the behaviour of ions in the surroundings of a negatively biased cylindrical Langmuir probe. Here, we report our findings on the transition between radial and orbital behaviour observed by means of the aforementioned code. The influence of the ion to electron temperature ratio on the transition for different dimensionless probe radius is discussed. Two different behaviours have been found for small and large probe radii

    Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating

    Get PDF
    In recent years, the world’s food industry has focused increasing attention on electrical techniques of food processing. Ohmic heating is one of these techniques that can be considered as a high temperature short time and a purely bulk heating method, having potential applications in processes such as blanching, evaporation and pasteurization in the food industry. However such technology would have to assure the microbiological safety obtained by the conventional cooking methods. Concerning this, the influence of heat treatment by ohmic and conventional technology on death kinetic parameters (D and z values) of Escherichia coli ATCC® 25922 was studied in goat milk. In ohmic treatment lower D values were obtained (D60ºC = 4.2 min, D63ºC = 1.9 min, D65ºC = 0.86 min) as compared to conventional treatment (D63ºC = 3.9 min, D65ºC = 3.5, D67ºC = 2.8 min, D75ºC = 1.5 min). The increase of temperature required for a ten fold decrease in D value was also lower in the ohmic inactivation (z = 8.4 ºC) comparing with the conventional inactivation (z = 23.1 ºC). The death kinetics for Bacillus licheniformis ATCC® 14580 spores in cloudberry jam were also studied under both types of heat inactivation (ohmic and conventional) and similar conclusions were drawn for the D values; lower D values were also obtained for ohmic treatment (D70ºC = 57.1 min, D75ºC = 25.2 min, D80ºC = 7.2 min) as compared to conventional treatment (D70ºC = 85.3 min, D75ºC = 51.0, D80ºC = 18.1 min, D85ºC = 6.0 min, D90ºC = 1.6 min). However, between the z values obtained for those treatments (z ohmic = 11.1 ºC and z conventional = 11.4 ºC) the differences were not significant. In general the results of present work indicate that the ohmic heating provides quicker death kinetics. This opens the perspective for shorter, less aggressive treatments

    New symmetrical quinazoline derivatives selectively induce apoptosis in human cancer cells

    Get PDF
    In the search of new symmetrical derivatives with anticancer activity, we have looked for novel compounds able to induce a selective proapoptotic mechanism in cancer cells. The potential antitumoral activity of several quinazoline derivatives was evaluated in vitro examining their cytotoxic effects against human breast, colon and bladder cancer cell lines. The IC(50) value of the compounds that showed cytotoxic activity was calculated. These compounds were tested for their ability to induce caspase-3 activation and nuclear chromatin degradation. Non-tumoral human cell lines were used to test the selectivity of the cytotoxic compounds against cancer cells. Several compounds showed no cytotoxicity in these cell lines. Finally, JRF12 (2,4-dibenzylaminoquinazoline) was chosen as the best candidate and its mechanism of action was studied in more detail. A time dependent evaluation of apoptosis was performed in the three cancer cell lines, followed by an evaluation of the cell cycle regulation involvement that showed a decrease of cells in G(1) phase and increase of cells in G(2) phase before cell death. 2,4-dibenzylaminoquinazoline treatment produces few changes in the expression of genes as evaluated by using oligonucleotide microarrays and Q-RT-PCR assays. In conclusion, 2,4-dibenzylaminoquinazoline is a promising anticancer drug showing cytostatic and apoptotic effects mainly in a transcription independent manner

    GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.

    Get PDF
    NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments

    Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease

    Get PDF
    The accumulation of amyloid-β in the brain is an essential feature of Alzheimer's disease. However, the impact of amyloid-β-accumulation on neuronal dysfunction on the single cell level in vivo is poorly understood. Here we investigate the progression of amyloid-β load in relation to neuronal dysfunction in the visual system of the APP23×PS45 mouse model of Alzheimer's disease. Using in vivo two-photon calcium imaging in the visual cortex, we demonstrate that a progressive deterioration of neuronal tuning for the orientation of visual stimuli occurs in parallel with the age-dependent increase of the amyloid-β load. Importantly, we find this deterioration only in neurons that are hyperactive during spontaneous activity. This impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Together, our results identify distinct stages of decline in sensory cortical performance in vivo as a function of the increased amyloid-β-load

    Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice

    Get PDF
    In Alzheimer's disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (Aβ) rather than with the deposition of fibrillar Aβ in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar Aβ, but dosage of soluble Aβ1–42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble Aβ is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100–800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble Aβ1–42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble Aβ1–42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses

    Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome

    Get PDF
    Purpose: Brassica are an important food source worldwide and are characterised by the presence of compounds called glucosinolates. Studies indicate that the glucosinolate derived bioactive metabolite sulphoraphane can elicit chemoprotective benefits on human cells. Glucosinolates can be metabolised in vivo by members of the human gut microbiome, although the prevalence of this activity is unclear. Brassica and Allium plants also contain S-methylcysteine sulphoxide (SMCSO), that may provide additional health benefits but its metabolism by gut bacteria is not fully understood. Methods: We examined the effects of a broccoli leachate (BL) on the composition and function of human faecal microbiomes of five different participants under in vitro conditions. Bacterial isolates from these communities were then tested for their ability to metabolise glucosinolates and SMCSO. Results: Microbial communities cultured in vitro in BL media were observed to have enhanced growth of lactic acid bacteria, such as lactobacilli, with a corresponding increase in the levels of lactate and short-chain fatty acids. Members of Escherichia isolated from these faecal communities were found to bioconvert glucosinolates and SMCSO to their reduced analogues. Conclusion: This study uses a broccoli leachate to investigate the bacterial-mediated bioconversion of glucosinolates and SMCSO, which may lead to further products with additional health benefits to the host. We believe that this is the first study that shows the reduction of the dietary compound S-methylcysteine sulphoxide by bacteria isolated from human faeces

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    Prognostic value of fractional flow reserve: Linking physiologic severity to clinical outcomes

    Get PDF
    BACKGROUND: Fractional flow reserve (FFR) has become an established tool for guiding treatment, but its graded relationship to clinical outcomes as modulated by medical therapy versus revascularization remains unclear.OBJECTIVES: The study hypothesized that FFR displays a continuous relationship between its numeric value and prognosis, such that lower FFR values confer a higher risk and therefore receive larger absolute benefits from revascularization.METHODS: Meta-analysis of study- and patient-level data investigated prognosis after FFR measurement. An interaction term between FFR and revascularization status allowed for an outcomes-based threshold.RESULTS: A total of 9,173 (study-level) and 6,961 (patient-level) lesions were included with a median follow-up of 16 and 14 months, respectively. Clinical events increased as FFR decreased, and revascularization showed larger net benefit for lower baseline FFR values. Outcomes-derived FFR thresholds generally occurred around the range 0.75 to 0.80, although limited due to confounding by indication. FFR measured immediately after stenting also showed an inverse relationship with prognosis (hazard ratio: 0.86, 95% confidence interval: 0.80 to 0.93; p < 0.001). An FFR-assisted strategy led to revascularization roughly half as often as an anatomy-based strategy, but with 20% fewer adverse events and 10% better angina relief.CONCLUSIONS: FFR demonstrates a continuous and independent relationship with subsequent outcomes, modulated by medical therapy versus revascularization. Lesions with lower FFR values receive larger absolute benefits from revascularization. Measurement of FFR immediately after stenting also shows an inverse gradient of risk, likely from residual diffuse disease. An FFR-guided revascularization strategy significantly reduces events and increases freedom from angina with fewer procedures than an anatomy-based strategy
    corecore