882 research outputs found

    Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies.

    Get PDF
    Right- and left-handedness run in families, show greater concordance in monozygotic than dizygotic twins, and are well described by single-locus Mendelian models. Here we summarize a large genome-wide association study (GWAS) that finds no significant associations with handedness and is consistent with a meta-analysis of GWASs. The GWAS had 99% power to detect a single locus using the conventional criterion of P < 5 × 10(-8) for the single locus models of McManus and Annett. The strong conclusion is that handedness is not controlled by a single genetic locus. A consideration of the genetic architecture of height, primary ciliary dyskinesia, and intelligence suggests that handedness inheritance can be explained by a multilocus variant of the McManus DC model, classical effects on family and twins being barely distinguishable from the single locus model. Based on the ENGAGE meta-analysis of GWASs, we estimate at least 40 loci are involved in determining handedness

    Fredholm determinants and pole-free solutions to the noncommutative Painleve' II equation

    Get PDF
    We extend the formalism of integrable operators a' la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi-infinite interval and to matrix integral operators with a kernel of the form E_1^T(x) E_2(y)/(x+y) thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painleve' II (recently introduced by Retakh and Rubtsov), a related noncommutative equation of Painleve' type. We construct a particular family of solutions of the noncommutative Painleve' II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painleve' II. Such a solution plays the same role as its commutative counterpart relative to the Tracy-Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.Comment: 46 pages, no figures (oddly

    Some investigations into non passive listening

    Get PDF
    Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Size-dependent wet removal of black carbon in Canadian biomass burning plumes

    Get PDF
    Wet deposition is the dominant mechanism for removing black carbon (BC) from the atmosphere and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. This depleted the majority of the plume’s BC mass, and the largest and most coated BCcontaining particles were found to be preferentially removed, suggesting that nucleation scavenging was likely the dominant mechanism. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coating by hydrophilic compounds associated with the Canadian biomass burning particles. This study provides measurements of BC size, mixing state and removal efficiency to constrain model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    The Tug1 locus is essential for male fertility

    Get PDF
    Background: Several long noncoding RNAs (lncRNAs) have been shown to function as central components of molecular machines that play fundamental roles in biology. While the number of annotated lncRNAs in mammalian genomes has greatly expanded, their functions remain largely uncharacterized. This is compounded by the fact that identifying lncRNA loci that have robust and reproducible phenotypes when mutated has been a challenge. Results: We previously generated a cohort of 20 lncRNA loci knockout mice. Here, we extend our initial study and provide a more detailed analysis of the highly conserved lncRNA locus, Taurine Upregulated Gene 1 (Tug1). We report that Tug1 knockout male mice are sterile with complete penetrance due to a low sperm count and abnormal sperm morphology. Having identified a lncRNA loci with a robust phenotype, we wanted to determine which, if any, potential elements contained in the Tug1 genomic region (DNA, RNA, protein, or the act of transcription) have activity. Using engineered mouse models and cell-based assays, we provide evidence that the Tug1 locus harbors three distinct regulatory activities - two noncoding and one coding: (i) a cis DNA repressor that regulates many neighboring genes, (ii) a lncRNA that can regulate genes by a trans-based function, and finally (iii) Tug1 encodes an evolutionary conserved peptide that when overexpressed impacts mitochondrial membrane potential. Conclusions: Our results reveal an essential role for the Tug1 locus in male fertility and uncover three distinct regulatory activities in the Tug1 locus, thus highlighting the complexity present at lncRNA loci

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore