14,583 research outputs found

    Development of a mass spectrometer system for the measurement of inert gases in meteorites

    Get PDF
    The study of the inert gases in meteorites has provided many clues as to the origin and evolution of the solar system. Particularly crucial and complex are the gases krypton and xenon. To accurately measure the isotopic compositions of these gases requires a mass spectrometer of high sensitivity and resolution. A previously unused and largely untested mass spectrometer system was brought to the point where it was ready for routine sample analyses. This involved, among other things, focusing the ion beam for optimal peak shape and sensitivity, documenting the instrument's response to a series of characteristic tests such as multplier gain checks, and interfacing the instrument to a computer to run the sample analyses. Following this testing and setting up, three iron meteorite samples were to be analyzed for argon, krypton, and xenon. The three samples were shown in prior work to possibly contain primordial heavy inert gases. Although these analyses have not yet been carried out, it is anticipated that they will be completed in the near future

    Quantum synchronization as a local signature of super- and subradiance

    Get PDF
    We study the relationship between the collective phenomena of super and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of long standing coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occur on the same time scale. This reciprocity is broken in the presence of dephasing noise.Comment: 12 pages, 6 figure

    On the origin of <i>Halipeurus heraldicus</i> on Round Island petrels: cophylogenetic relationships between petrels and their chewing lice

    Get PDF
    Lice phylogenetic relationships have often been used to elucidate host relationships and vice versa. In this study, we investigate the louse genus Halipeurus which parasitizes bird hosts in the families Procellariidae, Hydrobatidae and Pelecanoididae. The presence of two lice species on Pterodroma arminjoniana in different breeding grounds (Halipeurus heraldicus on Round Island, off Mauritius in the Indian Ocean and Halipeurus kermadecensis on Trindade Island in the Atlantic Ocean) has led to some confusion in the distribution of Pt. arminjoniana and its close relatives Pt. heraldica and Pt. neglecta. By using a cophylogenetic approach that incorporates uncertainties in phylogenetic reconstructions, we show significant overall coevolution between Halipeurus lice and their hosts. However, the study also indicates that the presence of H. heraldicus on Pt. arminjoniana and Pt. neglecta on Round Island and on Pt. heraldica on Gambier Island are the result of a host switch whereas H. kermadecensis is the ancestral parasite of Pt. arminjoniana. This suggests that H. kermadecensis was lost during or after colonisation of Round Island by Pt. arminjoniana. We conclude that cophylogenetic analyses are central to inferring the evolutionary history and biogeographical patterns of hosts and their parasites

    Influence of electromagnetic interferences on the gravimetric sensitivity of surface acoustic waveguides

    Full text link
    Surface acoustic waveguides are increasing in interest for (bio)chemical detection. The surface mass modification leads to measurable changes in the propagation properties of the waveguide. Among a wide variety of waveguides, Love mode has been investigated because of its high gravimetric sensitivity. The acoustic signal launched and detected in the waveguide by electrical transducers is accompanied by an electromagnetic wave; the interaction of the two signals, easily enhanced by the open structure of the sensor, creates interference patterns in the transfer function of the sensor. The influence of these interferences on the gravimetric sensitivity is presented, whereby the structure of the entire sensor is modelled. We show that electromagnetic interferences generate an error in the experimental value of the sensitivity. This error is different for the open and the closed loop configurations of the sensor. The theoretical approach is completed by the experimentation of an actual Love mode sensor operated under liquid in open loop configuration. The experiment indicates that the interaction depends on the frequency and the mass modifications.Comment: 28 pages, 8 figure

    Simultaneous surface acoustic wave and surface plasmon resonance measurements: electrodeposition and biological interactions monitoring

    Full text link
    We present results from an instrument combining surface acoustic wave (SAW) propagation and surface plasmon resonance (SPR) measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15\pm15 cm2/gcm^2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain respectively 4.7±\pm0.7 nm and 75±\pm15%.Comment: 13 pages, 4 figure

    ARCHITECTURE RECOGNITION BY MEANS OF CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    Abstract. The use of mobile computing technologies can change the experience of visiting cultural sites by making vast digital heritage collections accessible on site. The spread of machine learning technologies on mobile devices is encouraging the interaction of artificial intelligence with the shape of the built environment. However, while some research already applies deep learning image recognition in an urban context, the literature on how to develop effective neural networks to detect architectural features is still limited, as well as the availability of architecture-related datasets. This work presents the steps and results of the prototype development of a mobile app to perform monument recognition using convolutional neural networks. The tool allows users to interact with the physical space and access a digital archive of texts, models, images and other data.</p

    Physical fitness assessment in Goalball: A scoping review of the literature

    Get PDF
    Background: Goalball is a Paralympic sport for visually impaired athletes. Although it is widely practiced, a great variety of tests are adopted to evaluate athletes' physical fitness. Therefore, the objective was to identify the physical fitness tests adopted in this sport to find the common aspects between them and, eventually, to propose a standard operating procedure. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines were adopted. The studies were extracted from PubMed, Web of Science, and Scopus. A selection process by title, abstract, and full-text, according to the inclusion and exclusion criteria, was performed. The results were discussed with narrative synthesis. Results: A total of 7 papers and 222 participants were included. A wide variety of tests were adopted and the Brockport Physical Fitness Test (BPFT) was the only battery included to evaluate general athletes' well-being. Conclusions: Although few literature exists on Goalball, the BPFT could be the battery for evaluating Goalball athletes though the test battery should be standardized to the characteristics of this sport

    Limitation of entanglement due to spatial qubit separation

    Full text link
    We consider spatially separated qubits coupled to a thermal bosonic field that causes pure dephasing. Our focus is on the entanglement of two Bell states which for vanishing separation are known as robust and fragile entangled states. The reduced two-qubit dynamics is solved exactly and explicitly. Our results allow us to gain information about the robustness of two-qubit decoherence-free subspaces with respect to physical parameters such as temperature, qubit-bath coupling strength and spatial separation of the qubits. Moreover, we clarify the relation between single-qubit coherence and two-qubit entanglement and identify parameter regimes in which the terms robust and fragile are no longer appropriate.Comment: 7 pages, 3 figures; revised version, accepted for publication in Europhys. Let
    • 

    corecore