373 research outputs found

    Weight outcomes audit for 34,271 adults referred to a primary care/commercial weight management partnership scheme

    Get PDF
    Copyright © 2011 S. Karger AG, Basel.Peer reviewedPublisher PD

    Volcano dome dynamics at Mount St. Helens:Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Get PDF
    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity-and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals

    Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain

    Get PDF
    BACKGROUND: Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing thehuman body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change inbody weight over time and gut microbiome composition.METHODS: We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females fromTwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjustedfor caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier.RESULTS: Less than half of the variation in long-term weight change was found to be heritable (h2 = 0.41 (0.31, 0.47)). Gutmicrobiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake.Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates,family relatedness and multiple testing (false discovery rate o0.05). OTUs associated with lower long-term weight gain includedthose assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioidesspecies OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels ofdiversity.CONCLUSIONS: High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energymetabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders

    Metabolomic Profiling of Long-Term Weight Change:Role of Oxidative Stress and Urate Levels in Weight Gain

    Get PDF
    OBJECTIVE: To investigate the association between long-term weight change and blood metabolites. METHODS: Change in BMI over 8.6 ± 3.79 years was assessed in 3,176 females from the TwinsUK cohort (age range: 18.3-79.6, baseline BMI: 25.11 ± 4.35) measured for 280 metabolites at follow-up. Statistically significant metabolites (adjusting for covariates) were included in a multivariable least absolute shrinkage and selection operator (LASSO) model. Findings were replicated in the Cooperative Health Research in the Region of Augsburg (KORA) study (n = 1,760; age range: 25-70, baseline BMI: 27.72 ± 4.53). The study examined whether the metabolites identified could prospectively predict weight change in KORA and in the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) study (n = 471; age range: 55-74, baseline BMI: 27.24 ± 5.37). RESULTS: Thirty metabolites were significantly associated with change in BMI per year in TwinsUK using Bonferroni correction. Four were independently associated with weight change in the multivariable LASSO model and replicated in KORA: namely, urate (meta-analysis β [95% CI] = 0.05 [0.040 to 0.063]; P = 1.37 × 10-19 ), gamma-glutamyl valine (β [95% CI] = 0.06 [0.046 to 0.070]; P = 1.23 × 10-20 ), butyrylcarnitine (β [95% CI] = 0.04 [0.028 to 0.051]; P = 6.72 × 10-12 ), and 3-phenylpropionate (β [95% CI] = -0.03 [-0.041 to -0.019]; P = 9.8 × 10-8 ), all involved in oxidative stress. Higher levels of urate at baseline were associated with weight gain in KORA and PLCO. CONCLUSIONS: Metabolites linked to higher oxidative stress are associated with increased long-term weight gain

    Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling

    Get PDF
    BACKGROUND/OBJECTIVES: Higher visceral fat mass (VFM) is associated with an increased risk for developing cardio-metabolic diseases. The mechanisms by which an unhealthy diet pattern may influence VF development has yet to be examined through cutting-edge multi-omic methods. Therefore, our objective was to examine the dietary influences on VFM and identify gut microbiome and metabolite profiles that link food intakes to VFM. SUBJECTS/METHODS: In 2218 twins with VFM, food intake and metabolomics data available we identified food intakes most strongly associated with VFM in 50% of the sample, then constructed and tested the ‘VFM diet score’ in the remainder of the sample. Using linear regression (adjusted for covariates, including BMI and total fat mass) we investigated associations between the VFM diet score, the blood metabolomics profile and the faecal microbiome (n=889), and confirmed these associations with VFM. We replicated top findings in monozygotic (MZ) twins discordant (greater than or equal to1 s.d. apart) for VFM, matched for age, sex and the baseline genetic sequence. RESULTS: Four metabolites were associated with the VFM diet score and VFM: hippurate, alpha-hydroxyisovalerate, bilirubin (Z,Z) and butyrylcarnitine. We replicated associations between VFM and the diet score (Beta[s.e.]: 0.281[0.091]; P=0.002), butyrylcarnitine (0.199[0.087]; P=0.023) and hippurate (−0.297[0.095]; P=0.002) in VFM-discordant MZ twins. We identified a single species, Eubacterium dolichum to be associated with the VFM diet score (0.042[0.011], P=8.47 × 10−5), VFM (0.057[0.019], P=2.73 × 10−3) and hippurate (−0.075[0.032], P=0.021). Moreover, higher blood hippurate was associated with elevated adipose tissue expression neuroglobin, with roles in cellular oxygen homeostasis (0.016[0.004], P=9.82 × 10−6). CONCLUSION: We linked a dietary VFM score and VFM to Eubacterium dolichum and four metabolites in the blood. In particular, the relationship between hippurate, a metabolite derived from microbial metabolism of dietary polyphenols, and reduced VFM, the microbiome and increased adipose tissue expression of neuroglobin provides potential mechanistic insight into the influence of diet on VFM

    TOWARD IAVCEI GUIDELINES ON THE ROLES AND RESPONSIBILITIES OF SCIENTISTS INVOLVED IN VOLCANIC HAZARD EVALUATION, RISK MITIGATION AND CRISIS RESPONSE

    Get PDF
    The International Association for Volcanology and Chemistry of the Earth’s Interior (IAVCEI), as the representative international association of scientists working on volcanic hazard evaluations and risk mitigation, promotes sustained open discussion within the scientific community of many relevant issues, including the following: & how to best understand and forecast volcanic activity, the associated hazards, and contribute to risk evaluations; & the appropriate roles and responsibilities of scientists prior to, during, and after crises; & the nature of scientists’ relationships with government authorities, populations at risk, and the media; & the manner and extent of involvement of scientists in processes that eventually lead authorities to make decisions, the extent of the liability or vulnerability of scientists to the outcomes of these decisions, and the way that scientists’ input may be perceived and judged by others; & the role of national and local culture and perception of risk in both mitigation policy and communication of hazard and risk; & the effectiveness of descriptions of forecasted volcanic phenomena and associated hazards, and of their related uncertainties; & how to best increase the awareness, preparedness and empowerment of individuals, and society as a whole, in order to reduce the impact of volcanic phenomena on society In particular, IAVCEI, as a modern learned society wants to offer through its media (e.g., its website, archives, documents, recommendation notes) informative material, which can help members and others to fulfill these roles and responsibilities. In particular, scientists have a role in protecting populations and societies from harm due to volcanic phenomena, within the context of, and being cognizant of, diverse cultural needs and settings. Furthermore, IAVCEI wants to develop frameworks within which relationships and communication with local communities, media, and authorities can be fostered and improve

    Promotion of Hendra virus replication by microRNA 146a

    Full text link
    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease

    Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome

    Get PDF
    Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health
    corecore