67 research outputs found

    The effects of a hydrogen-rich ground cover on cosmogenic thermal neutrons:Implications for exposure dating

    Get PDF
    We present results of thermal neutron flux measurements in experimental granite piles that were tailored to study the effect of hydrogen-rich covers on that flux. We find that hydrogen-rich covers (polyethylene, water), used as proxies for snow, dead and/or live plant matter, increase the thermal neutron flux in an underlying rock surface significantly, as compared to the state without cover. The rock serves as the main source for thermal neutrons, the hydrogen-rich cover as a neutron reflector. In situations where the thickness of such a cover would be negligible in terms of high-energy neutron (>10 MeV) attenuation, e.g. 2-3 cm water equivalent cover, a significant enhancement of the thermal neutron flux (factor >2.5 +/- 0.5) can be achieved. This increase is made up of three components (Masarik et al., 2007): (1) reflected thermal neutrons (albedo neutrons), (2) moderated fast neutrons from the ground, and (3) moderated fast neutrons from the atmospheric cascade (Masarik et al., 2007). The higher thermal neutron flux increases the production rates of those cosmogenic nuclides that have a significant thermal neutron production pathway (He-3, Cl-36, Ca-41) Ignoring this effect in situations where target nuclei (Li-6, Cl-36, Ca-40) are abundant will severely underestimate production rates. The effect of hydrogenrich ground cover on the thermal neutron flux has the potential to be used for studies that are aimed at reconstructing the persistence of past plant/snow cover. Isotopic ratios of spallogenic versus predominantly thermal neutron produced nuclides, would reveal the presence or absence of hydrogen-rich cover in the past as compared to the present-day situation. (C) 2013 Elsevier B.V. All rights reserved

    First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory

    Get PDF
    A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated background events from the delayed coincidences of two pulses in the Bi-Po decay chain. A four month run revealed a neutron-induced event rate of 1.84 +- 0.65 (stat.) events/day. Monte Carlo simulations based on the GEANT4 toolkit were carried out to estimate the efficiency of the detector and the energy spectra of the expected proton recoils. From comparison of the measured rate with Monte Carlo simulations the flux of fast neutrons from rock was estimated as (1.72 +- 0.61 (stat.) +- 0.38 (syst.))*10^(-6) cm^(-2) s^(-1) above 0.5 MeV.Comment: 37 pages, 24 figures, to be published in Astroparticle Physic

    Evaluation of criteria of trypanotolerance

    Get PDF
    Evaluates teh criteria for trypanotolerance including three related characterstics, v.z. the ability to control parasitaemia, the ability to control anaemia, and the ability to develop an effective immune response

    Simulations of neutron background in a time projection chamber relevant to dark matter searches

    Full text link
    Presented here are results of simulations of neutron background performed for a time projection chamber acting as a particle dark matter detector in an underground laboratory. The investigated background includes neutrons from rock and detector components, generated via spontaneous fission and (alpha, n) reactions, as well as those due to cosmic-ray muons. Neutrons were propagated to the sensitive volume of the detector and the nuclear recoil spectra were calculated. Methods of neutron background suppression were also examined and limitations to the sensitivity of a gaseous dark matter detector are discussed. Results indicate that neutrons should not limit sensitivity to WIMP-nucleon interactions down to a level of (1 - 3) x 10^{-8} pb in a 10 kg detector.Comment: 27 pages (total, including 3 tables and 11 figures). Accepted for publication in Nuclear Instruments and Methods in Physics Research - Section

    Ultra-low background germanium assay at the Boulby Underground Laboratory

    Get PDF
    As we move to an era where next generation ultra-low background particle physics experiments begin to be designed and constructed, the ability to assay materials with high sensitivity and at speed with a variety of techniques will be key. This paper describes the Mirion Technologies (Canberra) specialty ultra-low background detectors installed and commissioned at the Boulby Underground Laboratory between 2017 and 2021. The low background levels of the detectors combine with low background shielding and a radon-reduced dry nitrogen purge system to give sensitivity approaching the best in the world without the need for intricate shielding solutions. For an optimised sample geometry, run for 100 d, it would be possible to reach close to 10 μBq kg-1(10-12 g/g) for background radionuclides of interest in neutrinoless double-beta decay

    Neutron background in large-scale xenon detectors for dark matter searches

    Full text link
    Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (alpha,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 109101010^{-9}-10^{-10} pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.Comment: 35 pages, 13 figures, 2 tables, accepted for publication in Astroparticle Physic

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    Get PDF
    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.Comment: 27 pages, 12 figures, 5 tables. Submitted to Nuclear Instruments and Methods in Physics Research, Section A. Subj-class: Instrumentation and Detector
    corecore