67 research outputs found
Chronotropic Incompentence and Functional Capacity in CHF
SUMMARY Aim: To assess the effect of chronotropic incompetence on functional capacity in chronic heart failure (CHF) patients, as evaluated as NYHA and peak oxygen consumption (pVO2), focusing on the presence and dose of β-blocker treatment. Methods: Nine hundred and sixty-seven consecutive CHF patients were evaluated, 328 of whom were discarded because they failed to meet the study criteria. Of the 639 analyzed, 90 were not treated with β-blockers whereas the other 549 were. The latter were further subdivided in high (n = 184) and low (n = 365) β-blockers daily dose group in accordance with an arbitrary cut-off of 25 mg for carvedilol and of 5 mg for bisoprolol. Failure to achieve 80% of the percentage of maximum age predicted peak heart rate (%Max PHR) or of HR reserve (%HRR) constituted chronotropic incompetence. Results: No differences were found in NYHA or pVO2 between patients with and without β-blockers and, similarly, between high and low β-blocker dose groups. Twenty and sixty-nine percent of not β-blocked patients showed chronotropic incompetence according to %Max PHR and %HRR, respectively, whereas this prevalence rose to 61% and 84% in those on β-blocker therapy. Patients taking β-blockers without chronotropic incompetence, as inferable from both %Max PHR and %HRR, showed higher NYHA and pVO2 regardless of drug dose, whereas, in not β-blocked patients, only %HRR revealed a difference in functional capacity. At multivariable analysis, HR increase during exercise (ÎHR) was the variable most strongly associated to pVO2 (β: 0.572; SE: 0.008; P < 0.0001) and NYHA class (β: â0.499; SE: 0.001; P < 0.0001). Conclusions: ÎHR is a powerful predictor of CHF severity regardless of the presence of β-blocker therapy and of β-blocker daily dose
A daily time-step hydrological-energy-biomass model to estimate green roof performances across Europe to support planning and policies
Nature-based solutions (NBSs) and urban greening are well-established strategies used in various planning and policy instruments to promote the sustainability of cities and mitigate the effects of climate changes. Within this context, green roofs are emerging as an effective NBS in urban areas where space is often limited. The estimation of green roofs' benefits is essential for their effective implementation and engineering design. In this contribution, we present a daily time-step model to estimate the surface temperature, the growth of vegetation cover and the hydrological behaviour of a green roof. The model is tested using twenty time series of real and independent European green roofs. Results show that, in the absence of calibration, the model can reproduce the daily surface temperature with high accuracy. The vegetation growing period is also reproduced. The hydrological variables can be estimated with moderate accuracy, and higher accuracy can be achieved when the model is calibrated. Therefore, the model proves a useful tool to support the appraisal of green roofs and the planning of green infrastructures in European cities.info:eu-repo/semantics/publishedVersio
Mediterranean monitoring and forecasting operational system for Copernicus Marine Service
The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission.
Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the
pre-operational system developed during the MyOcean projects, consolidating the understanding of regional
Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection
networks and guaranteeing an efficient link with other Centers in Copernicus network.
The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature,
salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in
2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the
Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages
the service delivery.
The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a
unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components,
guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products.
The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical
and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in
the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily
precipitation; reanalysis time-series have been increased by one year.
Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon
system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface).
Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.PublishedVienna3SR. AMBIENTE - Servizi e ricerca per la Societ
Management of Urban Waters with Nature-Based Solutions in Circular CitiesâExemplified through Seven Urban Circularity Challenges
Nature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled âImplementing nature-based solutions (NBS) for building a resourceful circular cityâ has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes of five elucidation workshops with more than 20 European experts from different backgrounds. These international workshops were used to examine the effectiveness of NBS to address UCC and foster NBS implementation towards circular urban water management. A major outcome was the identification of the two most relevant challenges for water resources in urban areas: âRestoring and maintaining the water cycleâ (UCC1) and âWater and waste treatment, recovery, and reuseâ (UCC2). s Moreover, significant synergies with âNutrient recovery and reuseâ, âMaterial recovery and reuseâ, âFood and biomass productionâ, âEnergy efficiency and recoveryâ, and âBuilding system recoveryâ were identified. Additionally, the paper presents real-life case studies to demonstrate how different NBS and supporting units can contribute to the UCC. Finally, a case-based semi-quantitative assessment of the presented NBS was performed. Most notably, this paper identifies the most typically employed NBS that enable processes for UCC1 and UCC2. While current consensus is well established by experts in individual NBS, we presently highlight the potential to address UCC by combining different NBS and synergize enabling processes. This study presents a new paradigm and aims to enhance awareness on the ability of NBS to solve multiple urban circularity issues.publishedVersio
Sex Profile and Risk Assessment With Cardiopulmonary Exercise Testing in Heart Failure: Propensity Score Matching for Sex Selection Bias
In heart failure (HF), women show better survival despite a comparatively low peak oxygen consumption (V Ěo2): this raises doubt about the accuracy of risk assessment by cardiopulmonary exercise testing (CPET) in women. Accordingly, we aimed to check (1) whether the predictive role of well-known CPET risk indexes, ie, peak V Ěo2 and ventilatory response (V Ěe/V Ěco2 slope), is sex independent and (2) if sex-related characteristics that impact outcome in HF should be considered as associations that may confound the effect of sex on survival
Exploring changes in childrenâs well-being due to COVID-19 restrictions: the Italian EpaS-ISS study
BackgroundWhile existing research has explored changes in health behaviours among adults and adolescents due to the COVID-19 outbreak, the impact of quarantine on young children's well-being is still less clear. Moreover, most of the published studies were carried out on small and non-representative samples. The aim of the EpaS-ISS study was to describe the impact of the COVID-19 pandemic on the habits and behaviours of a representative sample of school children aged mainly 8-9 years and their families living in Italy, exploring the changes in children's well-being during the COVID-19 pandemic compared to the immediately preceding time period.MethodsData were collected using a web questionnaire. The target population was parents of children attending third-grade primary schools and living in Italy. A cluster sample design was adopted. A Well-Being Score (WBS) was calculated by summing the scores from 10 items concerning the children's well-being. Associations between WBS and socio-demographic variables and other variables were analysed.ResultsA total of 4863 families participated. The children's WBS decreased during COVID-19 (median value from 31 to 25; p = 0.000). The most statistically significant variables related to a worsening children's WBS were: time of school closure, female gender, living in a house with only a small and unliveable outdoor area, high parents' educational level and worsening financial situation.ConclusionsAccording to parents ' perception, changes in daily routine during COVID-19 negatively affected children's well-being. This study has identified some personal and contextual variables associated with the worsening of children's WBS, which should be considered in case of similar events
The Role of Attitudes Toward Medication and Treatment Adherence in the Clinical Response to LAIs: Findings From the STAR Network Depot Study
Background: Long-acting injectable (LAI) antipsychotics are efficacious in managing psychotic symptoms in people affected by severe mental disorders, such as schizophrenia and bipolar disorder. The present study aimed to investigate whether attitude toward treatment and treatment adherence represent predictors of symptoms changes over time. Methods: The STAR Network \u201cDepot Study\u201d was a naturalistic, multicenter, observational, prospective study that enrolled people initiating a LAI without restrictions on diagnosis, clinical severity or setting. Participants from 32 Italian centers were assessed at three time points: baseline, 6-month, and 12-month follow-up. Psychopathological symptoms, attitude toward medication and treatment adherence were measured using the Brief Psychiatric Rating Scale (BPRS), the Drug Attitude Inventory (DAI-10) and the Kemp's 7-point scale, respectively. Linear mixed-effects models were used to evaluate whether attitude toward medication and treatment adherence independently predicted symptoms changes over time. Analyses were conducted on the overall sample and then stratified according to the baseline severity (BPRS < 41 or BPRS 65 41). Results: We included 461 participants of which 276 were males. The majority of participants had received a primary diagnosis of a schizophrenia spectrum disorder (71.80%) and initiated a treatment with a second-generation LAI (69.63%). BPRS, DAI-10, and Kemp's scale scores improved over time. Six linear regressions\u2014conducted considering the outcome and predictors at baseline, 6-month, and 12-month follow-up independently\u2014showed that both DAI-10 and Kemp's scale negatively associated with BPRS scores at the three considered time points. Linear mixed-effects models conducted on the overall sample did not show any significant association between attitude toward medication or treatment adherence and changes in psychiatric symptoms over time. However, after stratification according to baseline severity, we found that both DAI-10 and Kemp's scale negatively predicted changes in BPRS scores at 12-month follow-up regardless of baseline severity. The association at 6-month follow-up was confirmed only in the group with moderate or severe symptoms at baseline. Conclusion: Our findings corroborate the importance of improving the quality of relationship between clinicians and patients. Shared decision making and thorough discussions about benefits and side effects may improve the outcome in patients with severe mental disorders
A Novel Idea for Improving the Efficiency of Green Walls in Urban Environment (an Innovative Design and Technique)
The advantages of low-impact development approaches, such as green walls in an urban environment, are numerous. These systems can be applied for managing stormwater, saving energy consumption, decreasing noise pollution, improving runoff quality, improving life quality, and so forth. Besides, atmospheric water harvesting methods are considered a nonconventional water source. There are many studies about the analysis and advantages of green walls and atmospheric water harvesting conducted separately. However, the use of a combined system that uses fog harvesting in the irrigation of green walls has received less attention in previous studies, and therefore in this research, the feasibility of a novel green wall platform was investigated. At first, the potential of using green walls and atmospheric water harvesting in different climates was analyzed. Then a new combined system was proposed and explained. The study results determined that atmospheric water harvesting can be applied as a source of irrigation for green facilities, particularly in the dry season and in periods with lower precipitation. In the Mediterranean climate, summer fog harvesting yields 1.4–4.6 L/m2/day, and the water consumption of green walls is about 4–8 L/day/m2. This can improve one issue of green walls in an urban environment, which is irrigation in summer. Furthermore, the novel system would protect plants from severe conditions, improve buildings’ thermal behavior by decreasing direct sunlight, and increase conventional green walls’ efficiency and advantages
- âŚ