58 research outputs found

    Deciphering the Sox-Oct partner code by quantitative cooperativity measurements

    Get PDF
    Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate with Oct4. Sox2, Sox14, Sox21 and Sox15 strongly cooperate on the canonical element but compete with Oct4 on a recently discovered compressed element. Sry also cooperates on the canonical element but binds additively to the compressed element. In contrast, Sox17 and Sox4 cooperate more strongly on the compressed than on the canonical element. Sox5 and Sox18 show some cooperation on both elements, whereas Sox8 and Sox9 compete on both elements. Testing rationally mutated Sox proteins combined with structural modeling highlights critical amino acids for differential Sox-Oct4 partnerships and demonstrates that the cooperativity correlates with the efficiency in producing induced pluripotent stem cells. Our results suggest selective Sox-Oct partnerships in genome regulation and provide a toolset to study protein cooperation on DNA

    Tracing the Origin of the Fungal α1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution

    Get PDF
    BACKGROUND: Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. CONCLUSIONS/SIGNIFICANCE: Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG

    Cloning, purification and preliminary X-ray data analysis of the human ID2 homodimer

    No full text
    10.1107/S174430911203895XActa Crystallographica Section F: Structural Biology and Crystallization Communications68111354-135

    Crystal optimization and preliminary diffraction data analysis of the Smad1 MH1 domain bound to a palindromic SBE DNA element

    No full text
    10.1107/S1744309109037476Acta Crystallographica Section F: Structural Biology and Crystallization Communications65111105-110

    The Structure of Sox17 Bound to DNA Reveals a Conserved Bending Topology but Selective Protein Interaction Platforms

    No full text
    Sox17 regulates endodermal lineage commitment and is thought to function antagonistically to the pluripotency determinant Sox2. To investigate the biochemical basis for the distinct functions of Sox2 and Sox17, we solved the crystal structure of the high mobility group domain of Sox17 bound to a DNA element derived from the Lama1 enhancer using crystals diffracting to 2.7 Å resolution. Sox17 targets the minor groove and bends the DNA by approximately 80°. The DNA architecture closely resembles the one seen for Sox2/DNA structures, suggesting that the degree of bending is conserved between both proteins and nucleotide substitutions have only marginal effects on the bending topology. Accordingly, affinities of Sox2 and Sox17 for the Lama1 element were found to be identical. However, when the Oct1 contact interface of Sox2 is compared with the corresponding region of Sox17, a significantly altered charge distribution is observed, suggesting differential co-factor recruitment that may explain their biological distinctiveness. © 2009 Elsevier Ltd. All rights reserved.Link_to_subscribed_fulltex
    corecore