53 research outputs found

    On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    Full text link
    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure

    Kelvin Probe Microscopy Investigation of Poly-Octylthiophene Aggregates

    No full text
    Conductive polymers have fundamental relevance as well as novel technological applications in the organic optoelectronics field. Their photophysical and transport properties strongly depend on the molecular arrangement, and nanoscale characterization is needed to fully understand the optoelectronic processes taking place in organic devices. In this work, we study the electrostatic properties of poly-3-octylthiophene isolated structures: disordered low-packed polymer chains and crystalline layered lamellar assemblies. We characterize the electronic ground state using Kelvin probe microscopy. This allows us to resolve a rich variety of surface potential regions that emerge over the different polymer structures. These SP regions are correlated with different molecular aggregates

    Conducting polymers as electron glasses: Surface charge domains and slow relaxation

    No full text
    The surface potential of conducting polymers has been studied with scanning Kelvin probe microscopy. The results show that this technique can become an excellent tool to really 'see' interesting surface charge interaction effects at the nanoscale. The electron glass model, which assumes that charges are localized by the disorder and that interactions between them are relevant, is employed to understand the complex behavior of conducting polymers. At equilibrium, we find surface potential domains with a typical lateral size of 50 nm, basically uncorrelated with the topography and strongly fluctuating in time. These fluctuations are about three times larger than thermal energy. The charge dynamics is characterized by an exponentially broad time distribution. When the conducting polymers are excited with light the surface potential relaxes logarithmically with time, as usually observed in electron glasses. In addition, the relaxation for different illumination times can be scaled within the full aging model.This work has been funded by the Ministerio de Economia y Competitividad and (MINECO, Spain) FEDER (EU)through the projects FIS2012-38206, CSD2010-00024 and ENE2013-48816-C5-1-R -C02-01 and by the Fundacion Seneca 15324/PI/10 and 19907/GERM/15. EE and ELE thanks the MINECO programs MAT 2006-12970-C02-01, CSD2010-00024 for the financial support. EPL thanks the Ramon y Cajal program RyC2010.Peer reviewe
    • …
    corecore