58 research outputs found

    Whale ‘blubber’ as bio-inspired phase change material

    Get PDF
    In nature, all living things have various features to survive. For example, marine mammals have an adipose tissue system that protects them from harsh conditions in their environment. This tissue also known as “blubber” provides various features to marine mammals. Buoyancy, insulation, protection and energy storage are among the tasks of this tissue. Thermal energy storage systems are regarded as key to sustainable use of renewables to meet increasing global energy demand. Phase Change Materials (PCM) with thermal energy storage properties are commonly used in a wide variety of applications based on melting-freezing principle. PCMs can be inorganic or organics. Fatty acids are examples of organic PCMs. Please download the PDF file for the full content

    Excess Heat Capacity Surfaces for Water-Alkanol Mixtures by the UNIQUAC Model

    Full text link

    Designing microcapsules to save energy in buildings

    Get PDF
    Buildings consume the major portıon of the world’s energy. Improvements in building elements have been proven to significantly reduce this consumption. Integrating phase change materials (PCM) into a building’s parts is an effective solution to reduce energy consumption. PCMs help to maintain thermal comfort, reduce heating, cooling loads as well as improve passive storage of solar energy in buildings. Previous studies have concentrated on impregnating PCMs into materials like concrete mixes, gypsum wall boards, plasters, textured finishes, as well as PCM trombe walls, PCM shutters, PCM building blocks, air-based heating systems, ïŹ‚oor heating systems, suspended ceiling boards, etc.[1]. The current challenge is to find a suitable PCM that can be safe, thermally effective and at the same time not adversely effect the durability of a building. PCMs may be in microcapsulated form to meet these challenges. The most common PCM studied previously is paraffin, be it in bulk or microencapsulated. Leakage of paraffin from porous structures, the breaking of microcapsules and the low thermal capacities of microencapsulated PCMs are the main problems that have been observed [2]. The current challenge is to find a suitable PCM that can be safe, thermally effective and at the same time not adversely effect the durability of a building. PCMs may be in microcapsulated form to meet these challenges. The most common PCM studied previously is paraffin, be it in bulk or microencapsulated. Leakage of paraffin from porous structures, the breaking of microcapsules and the low thermal capacities of microencapsulated PCMs are the main problems that have been observed [2. Paraffin is a fossil fuel derivative; thus, it is unsustainable. This study focuses on bio-based fatty acid mixtures as PCMs. We developed microcapsules of fatty acid mixtures that were tried in concrete mixes. Our design approach involved the following steps: determining and characterizing PCMs with suitable thermal properties; developing a method to synthesize microencapsulated PCMs; and finally incorporate these materials in buildings for improving thermal comfort and energy conservation. Please click Additional Files below to see the full abstract

    CO2 mitigation accounting for Thermal Energy Storage (TES) case studies

    Full text link
    According to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 ''Surplus heat management using advanced TES for CO2 mitigation'' of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants

    Unconventional experimental technologies used for phase change materials (PCM) characterization: part2 morphological and structural characterization, physico-chemical stability and mechanical properties

    Get PDF
    Due to the high interest of appropriate characterization of PCM and hybrid PCM composites, different research centres and universities are using several material characterization techniques not commonly used with PCM, to study the structure and morphology of these materials. Likewise, physico-chemical stability is a crucial parameter for the performance of latent storage materials during time and its evaluation has been done by using molecular spectroscopy, chemiluminiscence or calorimetric tests. Atomic force microscopy and nanoindentation are also reported to characterize hybrid PCM composites

    Analysis of labour market needs for engineers with enhanced knowledge in sustainable renewable energy solutions in the built environment in some Asian countries

    Get PDF
    Despite the rapid growth in the uptake of renewable energy technologies, the educational profile and the skills gained at University level do not always comply with the practical needs of the organisations working in the field. Furthermore, even though the residential sector has very high potential in curbing its CO2 emissions worldwide thus meeting the challenging goals set out by the international agreements, such reduction has been limited so far. Within this context, the 'Skybelt' project, co-funded by the EU under the framework of the Erasmus + programme aims at enhancing in several Universities of Asia and Europe the engineering skills of students of all level for application of sustainable renewable energy solutions in the built environment. With the target of increasing the employability of graduates and the impact of the project, a survey on the labour market needs for specialists with enhanced knowledge and skills in the topic of the project has been conducted in the related Asian countries. Hence, relevant industries, labour market organisations and other stakeholders have been interviewed and the main results of this analysis is reported in the present paper. As first outcome of this activity, the obtained results have been considered in the selection of the modules to be improved according to a student centred study approach

    Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties

    Get PDF
    Due to the high interest of appropriate characterization of PCM and hybrid PCM composites, different research centres and universities are using several material characterization techniques not commonly used with PCM, to study the structure and morphology of these materials. Likewise, physico-chemical stability is a crucial parameter for the performance of latent storage materials during time and its evaluation has been done by using molecular spectroscopy, chemiluminiscence or calorimetric tests. Atomic force microscopy and nanoindentation are also reported to characterize hybrid PCM composites. Other chemical aspects studied are related with the compatibility of the PCM and its container and also considered in this compilation of characterization work.The work is partially funded by the European Union (COST Action COST TU0802) and the Spanish government (ENE2011- 28269-C03-01, ENE2011-28269-C03-02 and ENE2011-22722). The authors would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123) and their research group DIOPMA (2014 SGR 1543). Aran SolĂ© would like to thank the Departament d’Universitats, Recerca i Societat de la InformaciĂł de la Generalitat de Catalunya for her research fellowship

    Thermal energy storage for sustainable energy consumption : fundamentals, case studies and design

    No full text
    We all share a small planet. Our growing thirst for energy already threatens the future of our earth. Fossil fuels - energy resources of today - are not evenly distributed on the earth. 10 per cent of the world's population exploits 90 per cent of its resources. Today's energy systems rely heavily on fossil fuel resources which are diminishing ever faster. The world must prepare for a future without fossil fuels. Thermal energy storage provides us with a flexible heating and/or cooling tool to combat climate change through conserving energy and increasing energy while utilizing natural renewa
    • 

    corecore