17 research outputs found

    Operational evaluation of the Mediterranean Monitoring and Forecasting Centre products: implementation and results

    Get PDF
    A web-based validation platform has been developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for the Near Real Time validation of the MyOcean-Mediterranean Monitoring and Forecasting Centre products (Med-MFC). A network for the collection of the in-situ observations, the nested sub-basin forecasting systems model data (provided by the partners of the Mediterranean Operational Oceanography Network, MOON) and the Sea Surface Temperature (SST) satellite data has been developed and is updated every day with the new available data. The network collects temperature, salinity, currents and sea level data. The validation of the biogeochemical forecast products is done by use of ocean colour satellite data produced for the Mediterranean Sea. All the data are organized in an ad hoc database interfaced with a dedicated software which allows interactive visualizations and statistics (CalVal SW). This tool allows to evaluate NRT products by comparison with independent observations for the first time. The heterogeneous distribution and the scarcity of moored observations reflect with large areas uncovered with measurements. Nevertheless, the evaluation of the forecast at the locations of observations could be very useful to discover sub-regions where the model performances can be improved, thus yielding an important complement to the basin-mean statistics regularly calculated for the Mediterranean MFC products using semi-independent observations

    Collaborative database to track Mass Mortality Events in the Mediterranean Sea

    Get PDF
    Anthropogenic climate change, and global warming in particular, has strong and increasing impacts on marine ecosystems (Poloczanska et al., 2013; Halpern et al., 2015; Smale et al., 2019). The Mediterranean Sea is considered a marine biodiversity hotspot contributing to more than 7% of world\u2019s marine biodiversity including a high percentage of endemic species (Coll et al., 2010). The Mediterranean region is a climate change hotspot, where the respective impacts of warming are very pronounced and relatively well documented (Cramer et al., 2018). One of the major impacts of sea surface temperature rise in the marine coastal ecosystems is the occurrence of mass mortality events (MMEs). The first evidences of this phenomenon dated from the first half of \u201980 years affecting the Western Mediterranean and the Aegean Sea (Harmelin, 1984; Bavestrello and Boero, 1986; Gaino and Pronzato, 1989; Voultsiadou et al., 2011). The most impressive phenomenon happened in 1999 when an unprecedented large scale MME impacted populations of more than 30 species from different phyla along the French and Italian coasts (Cerrano et al., 2000; Perez et al., 2000). Following this event, several other large scale MMEs have been reported, along with numerous other minor ones, which are usually more restricted in geographic extend and/or number of affected species (Garrabou et al., 2009; Rivetti et al., 2014; Marb\ue0 et al., 2015; Rubio-Portillo et al., 2016, authors\u2019 personal observations). These events have generally been associated with strong and recurrent marine heat waves (Crisci et al., 2011; Kersting et al., 2013; Turicchia et al., 2018; Bensoussan et al., 2019) which are becoming more frequent globally (Smale et al., 2019). Both field observations and future projections using Regional Coupled Models (Adloff et al., 2015; Darmaraki et al., 2019) show the increase in Mediterranean sea surface temperature, with more frequent occurrence of extreme ocean warming events. As a result, new MMEs are expected during the coming years. To date, despite the efforts, neither updated nor comprehensive information can support scientific analysis of mortality events at a Mediterranean regional scale. Such information is vital to guide management and conservation strategies that can then inform adaptive management schemes that aim to face the impacts of climate change

    Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: epidemiology and genetic characterisation

    No full text
    The aim of this study was to identify and characterise Bacillus cereus from a unique national collection of 564 strains associated with 140 strong-evidence food-borne outbreaks (FBOs) occurring in France during 2007 to 2014. Starchy food and vegetables were the most frequent food vehicles identified; 747 of 911 human cases occurred in institutional catering contexts. Incubation period was significantly shorter for emetic strains compared with diarrhoeal strains A sub-panel of 149 strains strictly associated to 74 FBOs and selected on Coliphage M13-PCR pattern, was studied for detection of the genes encoding cereulide, diarrhoeic toxins (Nhe, Hbl, CytK1 and CytK2) and haemolysin (HlyII), as well as panC phylogenetic classification. This clustered the strains into 12 genetic signatures (GSs) highlighting the virulence potential of each strain. GS1 (nhe genes only) and GS2 (nhe, hbl and cytK2), were the most prevalent GS and may have a large impact on human health as they were present in 28% and 31% of FBOs, respectively. Our study provides a convenient molecular scheme for characterisation of B. cereus strains responsible for FBOs in order to improve the monitoring and investigation of B. cereus-induced FBOs, assess emerging clusters and diversity of strains

    Stratégie d’observation pour la quantification des flux de contaminants particulaires dans le Rhône : l’Observatoire des Sédiments du Rhône (OSR)

    No full text
    International audienceA long-term goal of the RhĂ´ne Sediment Observatory is to quantify suspended particles and associated contaminant fluxes along the RhĂ´ne River from Lake Geneva to the Mediterranean Sea, from hydrological event to annual scales. Facing the complexity to evaluate these fluxes, an original observation strategy was developed to produce dense datasets regarding liquid discharges, suspended particulate matterloads (from turbidity), particle-size, organic and inorganic contaminant concentrations from centrifuge or sediment trap samples. Eventually, continuous time-series and flux calculation were established and made available in an efficient database (BDOH/FluxOSR)

    Stratégie d’observation pour la quantification des flux de contaminants particulaires dans le Rhône : l’Observatoire des Sédiments du Rhône (OSR)

    No full text
    International audienceA long-term goal of the RhĂ´ne Sediment Observatory is to quantify suspended particles and associated contaminant fluxes along the RhĂ´ne River from Lake Geneva to the Mediterranean Sea, from hydrological event to annual scales. Facing the complexity to evaluate these fluxes, an original observation strategy was developed to produce dense datasets regarding liquid discharges, suspended particulate matterloads (from turbidity), particle-size, organic and inorganic contaminant concentrations from centrifuge or sediment trap samples. Eventually, continuous time-series and flux calculation were established and made available in an efficient database (BDOH/FluxOSR)

    Flux de MES et contaminants – Axe III : Réseau de mesure des flux, flux de radionucléides et de contaminants, traçage de l’origine des particules

    No full text
    National audienceRestitution des résultats de l'Axe III de l'Observatoire des Sédiments du Rhône (OSR-3) et avancées dans le cadre du programme OSR-4. Bilan sur les flux de radionucléides, de contaminants, la bancarisation des données et le traçage des particules

    Operational evaluation of the Mediterranean Monitoring and Forecasting Centre products: Implementation and Results

    No full text
    A web-based validation platform has been developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for the Near Real Time validation of the MyOcean-Mediterranean Monitoring and Forecasting Centre products (Med-MFC). A network for the collection of the in-situ observations, the nested sub-basin forecasting systems model data (provided by the partners of the Mediterranean Operational Oceanography Network, MOON) and the Sea Surface Temperature (SST) satellite data has been developed and is updated every day with the new available data. The network collects temperature, salinity, currents and sea level data. The validation of the biogeochemical forecast products is done by use of ocean colour satellite data produced for the Mediterranean Sea. All the data are organized in an ad hoc database interfaced with a dedicated software which allows interactive visualizations and statistics (CalVal SW). This tool allows to evaluate NRT products by comparison with independent observations for the first time. The heterogeneous distribution and the scarcity of moored observations reflect with large areas uncovered with measurements. Nevertheless, the evaluation of the forecast at the locations of observations could be very useful to discover sub-regions where the model performances can be improved, thus yielding an important complement to the basin-mean statistics regularly calculated for the Mediterranean MFC products using semi-independent observations
    corecore