166 research outputs found
Production of polyhydroxybutyrate by the cyanobacterium cf. Anabaena sp
Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass−1 d−1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L−1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L−1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions
Spindle Assembly Checkpoint Protein Dynamics Reveal Conserved and Unsuspected Roles in Plant Cell Division
Background: In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle. Methodology/Principal Findings: We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of 'wait anaphase', plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants. Conclusions/Significance: We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division
A novel immunoscintigraphy technique using metabolizable linker with angiotensin II treatment
Immunoscintigraphy is a tumour imaging technique that can have specificity, but high background radioactivity makes it difficult to obtain tumour imaging soon after the injection of radioconjugate. The aim of this study is to see whether clear tumour images can be obtained soon after injection of a radiolabelled reagent using a new linker with antibody fragments (Fab), in conditions of induced hypertension in mice. Fab fragments of a murine monoclonal antibody against human osteosarcoma were labelled with radioiodinated 3′-iodohippuryl N-ɛ-maleoyl-L-lysine (HML) and were injected intravenously to tumour-bearing mice. Angiotensin II was administered for 4 h before and for 1 h after the injection of radiolabelled Fab. Kidney uptake of 125I-labelled-HML-Fab was much lower than that of 125I-labelled-Fab radioiodinated by the chloramine-T method, and the radioactivity of tumour was increased approximately two-fold by angiotensin II treatment at 3 h after injection, indicating high tumour-to-normal tissue ratios. A clear tumour image was obtained with 131I-labelled-HML-Fab at 3 h post-injection. The use of HML as a radiolabelling reagent, combined with angiotensin II treatment, efficiently improved tumour targeting and enabled the imaging of tumours. These results suggest the feasibility of PET scan using antibody fragment labelled with 18F-fluorine substitute for radioiodine. © 1999 Cancer Research Campaig
Development of sentinel node localization and ROLL in breast cancer in Europe
The concept of a precise region in which to find the lymph nodes that drain the lymph directly from the primary tumor site can be traced back to a century ago to the observations of Jamieson and Dobson who described how cancer cells spread from cancer of the stomach in a single lymph node, which they called the â\u80\u9cprimary glandâ\u80\u9d. However, Cabanas was the first in 1977 to realize the importance of this concept in clinical studies following lymphography performed in patients with penile cancer. Thanks to Mortonâ\u80\u99s studies on melanoma in 1992, we began to understand the potential impact of the sentinel lymph node (SN) on the surgical treatment of this type of cancer. The use of a vital dye (blue dye) administered subdermally in the region surrounding the melanoma lesion led to the identification of the sentinel node, and the vital dye technique was subsequently applied to other types of solid tumors, e.g. breast, vulva. However, difficulties in using this technique in anatomical regions with deep lymphatic vessels, e.g. axilla, led to the development of lymphoscintigraphy, started by Alex and Krag in 1993 on melanoma and breast cancer and optimized by our group at European Institute of Oncology (IEO) in Milan in 1996. Today, lymphoscintigraphy is still considered as the most reliable method for the detection of the SN. In 1996, a new method for the localization of non-palpable breast lesion called radioguided occult lesion localization (ROLL) was also developed at IEO. Retrospective and prospective studies have since shown that the ROLL procedure permits the easy and accurate surgical removal of non-palpable breast lesions, overcoming the limitations of previous techniques such as the wire-guided localization. The purpose of this paper is to describe the evolution of SN biopsy and radioguided surgery in the management of breast cancer. We also include a review of the literature on the clinical scenarios in which SN biopsy in breast cancer is currently used, with particular reference to controversies and future prospects
The immune system and the impact of zinc during aging
The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence
Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages
Abstract
Background: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)- citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers.
Results: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)- citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts.
Conclusion: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites
Intellectual Property, Open Science and Research Biobanks
In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks.
After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
- …