110 research outputs found
The Brightening of Re50N: Accretion Event or Dust Clearing?
The luminous Class I protostar HBC 494, embedded in the Orion A cloud, is
associated with a pair of reflection nebulae, Re50 and Re50N, which appeared
sometime between 1955 and 1979. We have found that a dramatic brightening of
Re50N has taken place sometime between 2006 and 2014. This could result if the
embedded source is undergoing a FUor eruption. However, the near-infrared
spectrum shows a featureless very red continuum, in contrast to the strong CO
bandhead absorption displayed by FUors. Such heavy veiling, and the high
luminosity of the protostar, is indicative of strong accretion but seemingly
not in the manner of typical FUors. We favor the alternative explanation that
the major brightening of Re50N and the simultaneous fading of Re50 is caused by
curtains of obscuring material that cast patterns of illumination and shadows
across the surface of the molecular cloud. This is likely occurring as an
outflow cavity surrounding the embedded protostar breaks through to the surface
of the molecular cloud. Several Herbig-Haro objects are found in the region.Comment: 8 pages, accepted by Ap
The K2-ESPRINT Project. I. Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail
We present the discovery of a transiting exoplanet candidate in the K2
Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable
transit depths, ranging from 0\% to 1.3\%, are suggestive of a planet
that is disintegrating via the emission of dusty effluents. We characterize the
host star as an M-dwarf with K. We have obtained
ground-based transit measurements with several 1-m class telescopes and with
the GTC. These observations (1) improve the transit ephemeris; (2) confirm the
variable nature of the transit depths; (3) indicate variations in the transit
shapes; and (4) demonstrate clearly that at least on one occasion the transit
depths were significantly wavelength dependent. The latter three effects tend
to indicate extinction of starlight by dust rather than by any combination of
solid bodies. The K2 observations yield a folded light curve with lower time
resolution but with substantially better statistical precision compared with
the ground-based observations. We detect a significant "bump" just after the
transit egress, and a less significant bump just prior to transit ingress. We
interpret these bumps in the context of a planet that is not only likely
streaming a dust tail behind it, but also has a more prominent leading dust
trail that precedes it. This effect is modeled in terms of dust grains that can
escape to beyond the planet's Hill sphere and effectively undergo `Roche lobe
overflow,' even though the planet's surface is likely underfilling its Roche
lobe by a factor of 2.Comment: 22 pages, 16 figures. Final version accepted to Ap
Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey
Studies of Galactic chemical and dynamical evolution in the solar
neighborhood depend on the availability of precise atmospheric parameters
(Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic
surveys operate at low to moderate spectral resolution for efficiency in
observing large samples, which makes the stellar characterization difficult due
to the high degree of blending of spectral features. While most surveys use
spectral synthesis, in this work we employ an alternative method based on
spectral indices to determine the atmospheric parameters of a sample of nearby
FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving
power (R~12,000). We have developed three codes to automatically normalize the
observed spectra, measure the equivalent widths of the indices and, through the
comparison of those with values calculated with pre-determined calibrations,
derive the atmospheric parameters of the stars. The calibrations were built
using a sample of 309 stars with precise stellar parameters obtained from the
analysis of high-resolution FEROS spectra. A validation test of the method was
conducted with a sample of 30 MARVELS targets that also have reliable
atmospheric parameters from high-resolution spectroscopic analysis. Our
approach was able to recover the parameters within 80 K for Teff, 0.05 dex for
[Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical
external uncertainties found between different high-resolution analyzes. An
additional test was performed with a subsample of 138 stars from the ELODIE
stellar library and the literature atmospheric parameters were recovered within
125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show
that the spectral indices are a competitive tool to characterize stars with the
intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv
standards regarding the number of character
A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary
We report the discovery of a highly eccentric, double-lined spectroscopic
binary star system (TYC 3010-1494-1), comprising two solar-type stars that we
had initially identified as a single star with a brown dwarf companion. At the
moderate resolving power of the MARVELS spectrograph and the spectrographs used
for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular
stellar binary mimics a single-lined binary with an RV signal that would be
induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary.
At least three properties of this system allow it to masquerade as a single
star with a very low-mass companion: its large eccentricity (e~0.8), its
relatively long period (P~238 days), and the approximately perpendicular
orientation of the semi-major axis with respect to the line of sight (omega~189
degrees). As a result of these properties, for ~95% of the orbit the two sets
of stellar spectral lines are completely blended, and the RV measurements based
on centroiding on the apparently single-lined spectrum is very well fit by an
orbit solution indicative of a brown dwarf companion on a more circular orbit
(e~0.3). Only during the ~5% of the orbit near periastron passage does the
true, double-lined nature and large RV amplitude of ~15 km/s reveal itself. The
discovery of this binary system is an important lesson for RV surveys searching
for substellar companions; at a given resolution and observing cadence, a
survey will be susceptible to these kinds of astrophysical false positives for
a range of orbital parameters. Finally, for surveys like MARVELS that lack the
resolution for a useful line bisector analysis, it is imperative to monitor the
peak of the cross-correlation function for suspicious changes in width or
shape, so that such false positives can be flagged during the candidate vetting
process.Comment: 16 pages, 11 figures, 6 table
Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit
TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and
short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary
systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged
(~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of
0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the
SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements
from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of
~2 years. The best Keplerian orbital fit parameters were found to have a period
of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a
semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if
sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass
ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for
short period stellar companions to solar-like (Teff ~< 6000 K) stars. One
possible way to create such a system would be if a triple-component stellar
multiple broke up into a short period, low q binary during the cluster
dispersal phase of its lifetime. A candidate tertiary body has been identified
in the system via single-epoch, high contrast imagery. If this object is
confirmed to be co-moving, we estimate it would be a dM4 star. We present these
results in the context of our larger-scale effort to constrain the statistics
of low mass stellar and brown dwarf companions to FGK-type stars via the
MARVELS survey.Comment: 22 pages; accepted in A
KELT-9 b's Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin-Orbit Misalignment
KELT-9 b is an ultra hot Jupiter transiting a rapidly rotating, oblate
early-A-type star in a polar orbit. We model the effect of rapid stellar
rotation on KELT-9 b's transit light curve using photometry from the Transiting
Exoplanet Survey Satellite (\tess) to constrain the planet's true spin-orbit
angle and to explore how KELT-9 b may be influenced by stellar gravity
darkening. We constrain the host star's equatorial radius to be
times as large as its polar radius and its local surface brightness to vary by
\% between its hot poles and cooler equator. We model the stellar
oblateness and surface brightness gradient and find that it causes the transit
light curve to lack the usual symmetry around the time of minimum light. We
take advantage of the light curve asymmetry to constrain KELT-9 b's true spin
orbit angle (), agreeing with
\citet{gaudi2017giant} that KELT-9 b is in a nearly polar orbit. We also apply
a gravity darkening correction to the spectral energy distribution model from
\citet{gaudi2017giant} and find that accounting for rapid rotation gives a
better fit to available spectroscopy and yields a more reliable estimate for
the star's polar effective temperature.Comment: Accepted for Publication in ApJ. arXiv admin note: text overlap with
arXiv:1911.0502
TOI-3362b: A Proto Hot Jupiter Undergoing High-Eccentricity Tidal Migration
High-eccentricity tidal migration is a possible way for giant planets to be placed in short-period orbits. If this happens often, one would expect to catch proto hot Jupiters on highly elliptical orbits undergoing high-eccentricity tidal migration. As of yet, few such systems have been discovered. Here, we introduce TOI-3362b (TIC-464300749b), an 18.1 day, 5 MJup planet orbiting a main-sequence F-type star that is likely undergoing high-eccentricity tidal migration. The orbital eccentricity is 0.815 (+0.023)/(-0.032). With a semimajor axis of 0.153 (+0.002)/(-0.003) au, the planet\u27s orbit is expected to shrink to a final orbital radius of 0.051 (+0.008)/(-0.006) au after complete tidal circularization. Several mechanisms could explain the extreme value of the planet\u27s eccentricity, such as planet–planet scattering and secular interactions. Such hypotheses can be tested with follow-up observations of the system, e.g., measuring the stellar obliquity and searching for companions in the system with precise, long-term radial-velocity observations. The variation in the planet\u27s equilibrium temperature as it orbits the host star and the tidal heating at periapse make this planet an intriguing target for atmospheric modeling and observation. Because the planet\u27s orbital period of 18.1 days is near the limit of TESS\u27s period sensitivity, even a few such discoveries suggest that proto hot Jupiters may be quite common
TOI-4641b: An Aligned Warm Jupiter Orbiting a Bright (V=7.5) Rapidly Rotating F-star
We report the discovery of TOI-4641b, a warm Jupiter transiting a rapidly
rotating F-type star with a stellar effective temperature of 6560 K. The planet
has a radius of 0.73 , a mass smaller than 3.87 ,
and a period of 22.09 days. It is orbiting a bright star (V=7.5 mag) on a
circular orbit with a radius and mass of 1.73 and 1.41 .
Follow-up ground-based photometry was obtained using the Tierras Observatory.
Two transits were also observed with the Tillinghast Reflector Echelle
Spectrograph (TRES), revealing the star to have a low projected spin-orbit
angle (= degrees). Such obliquity measurements
for stars with warm Jupiters are relatively few, and may shed light on the
formation of warm Jupiters. Among the known planets orbiting hot and
rapidly-rotating stars, TOI-4641b is one of the longest-period planets to be
thoroughly characterized. Unlike hot Jupiters around hot stars which are more
often misaligned, the warm Jupiter TOI-4641b is found in a well-aligned orbit.
Future exploration of this parameter space can add one more dimension to the
star-planet orbital obliquity distribution that has been well-sampled for hot
Jupiters.Comment: Accepted MNRA
- …