28 research outputs found

    Immunoscintigraphy for therapy decision making and follow-up of biological therapies

    Get PDF
    With the availability of new biological therapies there is the need of more accurate diagnostic tools to noninvasively assess the presence of their targets. In this scenario nuclear medicine offers many radiopharmaceuticals for SPECT or PET imaging of many pathological conditions. The availability of monoclonal antibodies provides tools to target specific antigens involved in angiogenesis, cell cycle or modulation of the immune systems. The radiolabelling of such therapeutic mAbs is a promising method to evaluate the antigenic status of each cancer lesion or inflamed sites before starting the therapy. It may also allow to perform follow-up of such biological therapies. In the present review we provide an overview of the most studied radiolabelled antibodies for therapy decision making and follow-up of patients affected by cancer and other pathological conditions

    Diagnostic Value of the Early Heart-to-Mediastinum Count Ratio in Cardiac 123I-mIBG imaging for Parkinson's Disease

    Get PDF
    Early diagnosis of Parkinson's disease (PD) is of primary importance. The delayed (3-4 h after injection) Iodine-123-Metaiodobenzylguanidine (123I-mIBG) scintigraphy has been proven to be effective in early differential diagnosis for Lewy body disease. But early imaging (15-30 min after injection) has only been marginally studied for its possible diagnostic role. In this prospective study a thresholdfor the early Heart-to-Mediastinum (H/M) count ratio has been investigated, obtaining a diagnostic accuracy analogous to conventional, delayed imaging

    Unexpected increase of myocardial extracellular volume fraction in low cardiovascular risk HIV patients

    Get PDF
    Background People living with HIV (PLWH) are prone to develop sub-clinical Cardiovascular (CV) disease, despite the effectiveness of combined Antiretroviral Therapy (cART). Algorithms developed to predict CV risk in the general population could be inaccurate when applied to PLWH. Myocardial Extra-Cellular Matrix (ECM) expansion, measured by computed tomography, has been associated with an increased CV vulnerability in HIV-negative population. Measurement of Myocardial Extra-Cellular Volume (ECV) by computed tomography or magnetic resonance, is considered a useful surrogate for clinical evaluation of ECM expansion. In the present study, we aimed to determine the extent of cardiovascular involvement in asymptomatic HIV-infected patients with the use of a comprehensive cardiac computed tomography (CCT) approach. Materials and methods In the present study, ECV in low atherosclerotic CV risk PLWH was compared with ECV of age and gender matched HIV- individuals. 53 asymptomatic HIV + individuals (45 males, age 48 (42.5–48) years) on effective cART (CD4 + cell count: 450 cells/”L (IQR: 328–750); plasma HIV RNA: <37 copies/ml in all subjects) and 18 age and gender matched controls (14 males, age 55 (44.5–56) years) were retrospectively enrolled. All participants underwent CCT protocol to obtain native and postcontrast Hounsfield unit values of blood and myocardium, ECM was calculated accordingly. Results The ECV was significantly higher in HIV + patients than in the control group (ECV: 31% (IQR: 28%-31%) vs. 27.4% (IQR: 25%-28%), p < 0.001). The duration of cART (standardized ÎČ = 0.56 (0.33–0.95), p = 0.014) and the years of exposure to HIV infection (standardized ÎČ = 0.53 (0.4–0.92), p < 0.001), were positively and strongly associated with ECV values. Differences in ECV (p < 0.001) were also observed regarding the duration of cART exposure (< 5 years, 5–10 years and > 10 years). Moreover, ECV was independently associated with age of participants (standardized ÎČ = 0.42 (0.33–0.89), p = 0.084). Conclusions HIV infection and exposure to antiretrovirals play a detrimental role on ECV expansion. An increase in ECV indicates ECM expansion, which has been associated to a higher CV risk in the general population. The non-invasive evaluation of ECM trough ECV could represent an important tool to further understand the relationship between HIV infection, cardiac pathophysiology and the increased CV risk observed in PLWH

    Impact of SPECT corrections on 3D-dosimetry for TARE

    Get PDF
    Purpose: Many centers aim to plan liver transarterial radioembolization (TARE) with dosimetry, even without CT-based attenuation correction (AC), or with unoptimized scatter correction (SC) methods. This work investigates the impact of presence vs absence of such corrections, and limited spatial resolution, on 3D dosimetry for TARE. Methods: Three voxelized phantoms were derived from CT images of real patients with different body sizes. Simulations of 99mTc-SPECT projections were performed with the SIMIND code, assuming three activity distributions in the liver: uniform, inside a "liver's segment," or distributing multiple uptaking nodules ("nonuniform liver"), with a tumoral liver/healthy parenchyma ratio of 5:1. Projection data were reconstructed by a commercial workstation, with OSEM protocol not specifically optimized for dosimetry (spatial resolution of 12.6 mm), with/without SC (optimized, or with parameters predefined by the manufacturer; dual energy window), and with/without AC. Activity in voxels was calculated by a relative calibration, assuming identical microspheres and 99mTc-SPECT counts spatial distribution. 3D dose distributions were calculated by convolution with 90Y voxel S-values, assuming permanent trapping of microspheres. Cumulative dose-volume histograms in lesions and healthy parenchyma from different reconstructions were compared with those obtained from the reference biodistribution (the "gold standard," GS), assessing differences for D95%, D70%, and D50% (i.e., minimum value of the absorbed dose to a percentage of the irradiated volume). γ tool analysis with tolerance of 3%/13 mm was used to evaluate the agreement between GS and simulated cases. The influence of deep-breathing was studied, blurring the reference biodistributions with a 3D anisotropic gaussian kernel, and performing the simulations once again. Results: Differences of the dosimetric indicators were noticeable in some cases, always negative for lesions and distributed around zero for parenchyma. Application of AC and SC reduced systematically the differences for lesions by 5%–14% for a liver segment, and by 7%–12% for a nonuniform liver. For parenchyma, the data trend was less clear, but the overall range of variability passed from −10%/40% for a liver segment, and −10%/20% for a nonuniform liver, to −13%/6% in both cases. Applying AC, SC with preset parameters gave similar results to optimized SC, as confirmed by γ tool analysis. Moreover, γ analysis confirmed that solely AC and SC are not sufficient to obtain accurate 3D dose distribution. With breathing, the accuracy worsened severely for all dosimetric indicators, above all for lesions: with AC and optimized SC, −38%/−13% in liver's segment, −61%/−40% in the nonuniform liver. For parenchyma, D50% resulted always less sensitive to breathing and sub-optimal correction methods (difference overall range: −7%/13%). Conclusions: Reconstruction protocol optimization, AC, SC, PVE and respiratory motion corrections should be implemented to obtain the best possible dosimetric accuracy. On the other side, thanks to the relative calibration, D50% inaccuracy for the healthy parenchyma from absence of AC was less than expected, while the optimization of SC was scarcely influent. The relative calibration therefore allows to perform TARE planning, basing on D50% for the healthy parenchyma, even without AC or with suboptimal corrections, rather than rely on nondosimetric methods

    Vinorelbine plus 3-weekly trastuzumab in metastatic breast cancer: a single-centre phase 2 trial

    Get PDF
    BACKGROUND: After two studies reporting response rates higher than 70% in HER2-positive metastatic breast cancer with weekly trastuzumab and vinorelbine, we planned a phase 2 study to test activity of the same combination, with trastuzumab given every 3 weeks. METHODS: Patients with HER2-positive metastatic breast cancer (3+ at immunohistochemistry or positive at fluorescence in situ hybridization), PS ≀2, normal left-ventricular ejection fraction (LVEF) and no more than one chemotherapy line for metastatic disease were eligible. Vinorelbine (30 mg/m(2)) was given on days 1&8 every 21 and trastuzumab (8 mg/kg day 1, then 6 mg/kg) every 21 days). A single-stage phase 2 design, with p(0 )= 0.45, p(1 )= 0.65, type I and II error = 0.10, was applied; 22 objective responses were required in 39 patients. RESULTS: From Nov 2002 to May 2005, 50 patients were enrolled, with a median age of 54 years (range 31–81). Among 40 patients eligible for response assessment, there were 7 complete and 13 partial responses (overall response rate 50%; 95% exact CI 33.8–66.2); 11 patients had disease stabilization, lasting more than 6 months in 10 cases. Response rate did not vary according to patients and tumor characteristics, type and amount of previous chemotherapy. Within the whole series, median progression-free survival was 9.6 months (95% CI 7.3–12.3), median overall survival 22.7 months (95% CI 19.5-NA). Fifteen patients (30%) developed brain metastases at a median time of 12 months (range 1–25). There was one toxic death due to renal failure in a patient receiving concomitant pamidronate. Twenty-three patients (46%) had grade 3–4 neutropenia, 2 (4%) grade 3 anemia, 4 (8%) febrile neutropenia. Two patients stopped treatment because of grade 2 decline of LVEF and one patient because of grade 2 liver toxicity concomitant with a grade 1 decline of LVEF. One patient stopped trastuzumab after 50 cycles because of grade 1 decline of LVEF. CONCLUSION: Although lower than in initial studies, activity of 3-weekly trastuzumab plus vinorelbine fell within the range of results reported with weekly schedules. Toxicity was prevalently manageable. This combination is safe and active for metastatic breast cancer patients who received adjuvant taxanes with anthracyclines

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Dosimetry-Based Consideration on Remission and Relapse after Therapy with 223Ra-Dichloride in Castration-Resistant Prostate Cancer (CRPC) with Bone Metastases. A Case Report

    No full text
    Here, we present the case of a 64-year-old male patient diagnosed with castration-resistant prostate cancer (CRPC) with bone metastasis, treated with abiraterone prednisone/prednisolone in combination with 223Ra-dichloride therapy, who had remission and a subsequent relapse of bone metastasis on repeated bone scans after therapy. We also discuss the possibility of continuing the 223Ra-dichloride therapy over the six planned administrations by administering other cycles at the same dose or at higher doses, if shown to be devoid of a significant increase in side effects, based on dosimetry considerations

    In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies

    Get PDF
    International audienceThe aim was the validation of a platform for internal dosimetry, named MCID, based on patient-specific images and direct Monte Carlo (MC) simulations, for radioembolization of liver tumors with 90Y-labeled microspheres. CT of real patients were used to create voxelized phantoms with different density and activity maps. SPECT acquisitions were simulated by the SIMIND MC code. Input macros for the GATE/Geant4 code were generated by MCID, loading coregistered morphological and functional images and performing image segmentation. The dosimetric results obtained from the direct MC simulations and from conventional MIRD approach at both organ and voxel level, in condition of homogeneous tissues, were compared, obtaining differences of about 0.3% and within 3%, respectively, whereas differences increased (up to 14%) introducing tissue heterogeneities in phantoms. Mean absorbed dose for spherical regions of different sizes (10 mm ≀ r ≀ 30 mm) from MC code and from OLINDA/EXM were also compared obtaining differences varying in the range 7–69%, which decreased to 2–9% after correcting for partial volume effects (PVEs) from imaging, confirming that differences were mostly due to PVEs, even though a still high difference for the smallest sphere suggested possible source description mismatching. This study validated the MCID platform, which allows the fast implementation of a patient-specific GATE simulation, avoiding complex and time-consuming manual coding. It also points out the relevance of personalized dosimetry, accounting for inhomogeneities, in order to avoid absorbed dose misestimations

    Raccomandazioni per l'assicurazione di qualita' in risonanza magnetica con particolare riferimento agli aspetti di fisica medica

    No full text
    Supplement to: Fisica in medicina, 2004, 3. - Printed from http://www.aifm.it target=NewWindow>www.aifm.it (February 2005)Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 , Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Myocardial blood flow estimates from dynamic contrast-enhanced magnetic resonance imaging: three quantitative methods

    No full text
    Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood ow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may in uence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1 ± 0.05 mmol kg−1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Student’s t-test, linear regression analysis, and Bland–Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not signi cantly different, and were in good agreement with the literature. The results obtained during the rst-pass transit time (20 s) yielded p-values in the range 0.20–0.28 for Student’s t-test, linear regression analysis slopes between 0.98–1.03, and R values between 0.92–1.01. From the Bland– Altman plots, the paired comparisons yielded a bias (and a 95% CI)—expressed as ml/min/g—for FFM versus TM, −0.01 (−0.20, 0.17) or 0.02 (−0.49, 0.52) at rest or under stress respectively, for FFM versus GF, −0.05 (−0.29, 0.20) or −0.07 (−0.55, 0.41) at rest or under stress, and for TM versus GF, −0.03 (−0.30, 0.24) or −0.09 (−0.43, 0.26) at rest or under stress. With the two-way ANOVA, the results were p = 0.20 for the method effect (not signi cant), p < 0.0001 for the rest/stress condition effect (highly signi cant, as expected), whereas no interaction resulted between the rest/ stress condition and method (p = 0.70, not signi cant). Considering a wider time-frame (60 s), the estimates for both rest and stress conditions were 25%–30% higher (p in the range 0.016–0.025) than those obtained in the 20 s time-frame. MBF estimates obtained by various methods under rest/stress conditions were not signi cantly different in the rst-pass transit time, encouraging quantitative perfusion estimates in DCE-CMRI with the used methods
    corecore