2,600 research outputs found

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1ÎŒT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×10−5ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs.

    Get PDF
    Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling. © 2020 Pacheco-Fernandez et al

    On the possible sources of gravitational wave bursts detectable today

    Full text link
    We discuss the possibility that galactic gravitational wave sources might give burst signals at a rate of several events per year, detectable by state-of-the-art detectors. We are stimulated by the results of the data collected by the EXPLORER and NAUTILUS bar detectors in the 2001 run, which suggest an excess of coincidences between the two detectors, when the resonant bars are orthogonal to the galactic plane. Signals due to the coalescence of galactic compact binaries fulfill the energy requirements but are problematic for lack of known candidates with the necessary merging rate. We examine the limits imposed by galactic dynamics on the mass loss of the Galaxy due to GW emission, and we use them to put constraints also on the GW radiation from exotic objects, like binaries made of primordial black holes. We discuss the possibility that the events are due to GW bursts coming repeatedly from a single or a few compact sources. We examine different possible realizations of this idea, such as accreting neutron stars, strange quark stars, and the highly magnetized neutron stars (``magnetars'') introduced to explain Soft Gamma Repeaters. Various possibilities are excluded or appear very unlikely, while others at present cannot be excluded.Comment: 24 pages, 20 figure

    When the optimal is not the best: parameter estimation in complex biological models

    Get PDF
    Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system, and point to the need of a theory that addresses this problem more generally

    The one-dimensional contact process: duality and renormalisation

    Full text link
    We study the one-dimensional contact process in its quantum version using a recently proposed real space renormalisation technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates which are comparable in accuracy with the best known in the literature.Comment: 15 page

    Influence of structural and magnetic properties in the heating performance of multicore bioferrofluids

    Get PDF
    Biomedical applications of superparamagnetic iron oxide particles have been of interest for quite a number of years. Recent developments show that multifunctionality can be efficiently achieved using polymers to coat the particles and to provide anchoring elements to their surface. This leads to the formation of nanobeads with a reduced number of particles trapped by the polymeric structure. While the magnetothermic behavior of isolated nanoparticles has been a subject of interest over the past several years, multicore magnetic nanobeads have thus far not received the same attention. The influence of structural and magnetic properties in the hyperthermia performance of a series of magnetic fluids designed for biomedical purposes is studied here. The fluids are made of maghemite multicore polymeric beads, with variable nanoparticle size and hydrodynamic size, dispersed in a buffer solution. The specific loss power (SLP) was measured from 5 to 100 kHz with a field intensity of 21.8 kA/m. SLP increases with increasing magnetic core size, reaching 32 W/g Fe2O3 at 100 kHz for 16.2 nm. Within the framework of the linear response theory, a graphical construction is proposed to describe the interplay of both size distributions and magnetic properties in the heating performance of such fluids in a given frequency range. Furthermore, a numerical model is developed to calculate the spare contribution of Neel and Brown relaxation mechanisms to SLP, which gives a fair reproduction of the experimental data

    Seasonal variation of water uptake of a Quercus suber tree in Central Portugal

    Get PDF
    Hydraulic redistribution (HR) is the phenomenon where plant roots transfer water between soil horizons of different water potential. When dry soil is a stronger sink for water loss from the plant than transpiration, water absorbed by roots in wetter soil horizons is transferred toward, and exuded into dry soil via flow reversals through the roots. Reverse flow is a good marker of HR and can serve as a useful tool to study it over the long-term. Seasonal variation of water uptake of a Quercus suber tree was studied from late winter through autumn 2003 at Rio Frio near Lisbon, Portugal. Sap flow was measured in five small shallow roots (diameter of 3–4 cm), 1 to 2 m from the tree trunk and in four azimuths and at different xylem depths at the trunk base, using the heat field deformation method (HFD). The pattern of sap flow differed among lateral roots as soil dried with constant positive flow in three roots and reverse flow in two other roots during the night when transpiration ceased. Rain modified the pattern of flow in these two roots by eliminating reverse flow and substantially increasing water uptake for transpiration during the day. The increase in water uptake in three other roots following rain was not so substantial. In addition, the flux in individual roots was correlated to different degrees with the flux at different radial depths and azimuthal directions in trunk xylem. The flow in outer trunk xylem seemed to be mostly consistent with water movement from surface soil horizons, whereas deep roots seemed to supply water to the whole cross-section of sapwood. When water flow substantially decreased in shallow lateral roots and the outer stem xylem during drought, water flow in the inner sapwood was maintained, presumably due to its direct connection to deep roots. Results also suggest the importance of the sap flow sensor placement, in relation to sinker roots, as to whether lateral roots might be found to exhibit reverse flow during drought. This study is consistent with the dimorphic rooting habit of Quercus suber trees in which deep roots access groundwater to supply superficial roots and the whole tree, when shallow soil layers were dry

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore