2,036 research outputs found

    Classe de CiĂŞncias

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Classe de CiĂŞncias

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Stable leaders pave the way for cooperation under time-dependent exploration rates

    Get PDF
    Pinheiro, F. L., Pacheco, J. M., & Santos, F. C. (2021). Stable leaders pave the way for cooperation under time-dependent exploration rates. Royal Society Open Science, 8(2), [200910]. https://doi.org/10.1098/rsos.200910The exploration of different behaviours is part of the adaptation repertoire of individuals to new environments. Here, we explore how the evolution of cooperative behaviour is affected by the interplay between exploration dynamics and social learning, in particular when individuals engage on prisoner's dilemma along the edges of a social network. We show that when the population undergoes a transition from strong to weak exploration rates a decline in the overall levels of cooperation is observed. However, if the rate of decay is lower in highly connected individuals (Leaders) than for the less connected individuals (Followers) then the population is able to achieve higher levels of cooperation. Finally, we show that minor differences in selection intensities (the degree of determinism in social learning) and individual exploration rates, can translate into major differences in the observed collective dynamics.publishersversionpublishe

    Co-evolution of strategy and structure in complex networks with dynamical linking

    Full text link
    Here we introduce a model in which individuals differ in the rate at which they seek new interactions with others, making rational decisions modeled as general symmetric two-player games. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. We provide analytic results for the limiting cases where linking dynamics is much faster than evolutionary dynamics and vice-versa, and show how the individual capacity of forming new links or severing inconvenient ones maps into the problem of strategy evolution in a well-mixed population under a different game. For intermediate ranges, we investigate numerically the detailed interplay determined by these two time-scales and show that the scope of validity of the analytical results extends to a much wider ratio of time scales than expected

    Dynamics of Mutant Cells in Hierarchical Organized Tissues

    Get PDF
    Most tissues in multicellular organisms are maintained by continuous cell renewal processes. However, high turnover of many cells implies a large number of error-prone cell divisions. Hierarchical organized tissue structures with stem cell driven cell differentiation provide one way to prevent the accumulation of mutations, because only few stem cells are long lived. We investigate the deterministic dynamics of cells in such a hierarchical multi compartment model, where each compartment represents a certain stage of cell differentiation. The dynamics of the interacting system is described by ordinary differential equations coupled across compartments. We present analytical solutions for these equations, calculate the corresponding extinction times and compare our results to individual based stochastic simulations. Our general compartment structure can be applied to different tissues, as for example hematopoiesis, the epidermis, or colonic crypts. The solutions provide a description of the average time development of stem cell and non stem cell driven mutants and can be used to illustrate general and specific features of the dynamics of mutant cells in such hierarchically structured populations. We illustrate one possible application of this approach by discussing the origin and dynamics of PIG-A mutant clones that are found in the bloodstream of virtually every healthy adult human. From this it is apparent, that not only the occurrence of a mutant but also the compartment of origin is of importance
    • …
    corecore