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Abstract

Recently, the frequency dependent Moran process has been introduced in order to describe
evolutionary game dynamics in finite populations. Here, an alternative to this process is
investigated that is based on pairwise comparison between two individuals. We follow a
long tradition in the physics community and introduce a temperature (of selection) to ac-
count for stochastic effects. We calculate the fixation probabilities and fixation times for
any symmetric 2×2 game, for any intensity of selection and any initial number of mutants.
The temperature can be used to gauge continuously from neutral drift to the extreme selec-
tion intensity known as imitation dynamics. For some payoff matrices the distribution of
fixation times can become so broad that the average value is no longer very meaningful.

Key words: Evolutionary Game theory, Finite populations, Stochastic effects

1 Introduction

Evolutionary game theory (Maynard Smith, 1982; Weibull, 1995; Hofbauer and
Sigmund, 1998; Gintis, 2000; Cressman, 2003; Nowak and Sigmund, 2004; Nowak,
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2006) has become a standard approach to describe the evolutionary dynamics of a
population consisting of different types of interacting individuals under frequency
dependent selection. In the traditional approach, one assumes that individuals meet
each other at random in infinitely large, well-mixed populations. The replicator
dynamics describes how the abundance of strategic types in a population changes
based on their fitness, identified with the payoff resulting from the game. In this de-
terministic formulation, individuals with higher fitness increase in abundance and
ultimately, the system reaches a stable fixed point in which the population may
consist either of a single type or of a mixture of different types (Taylor and Jonker,
1978; Hofbauer and Sigmund, 1998, 2003).

Recently, it has been shown that the finiteness of populations may lead to funda-
mental changes in this picture due to stochastic effects (Nowak et al., 2004; Taylor
et al., 2004; Imhof et al., 2005; Imhof and Nowak, 2006). The fitness, F , of an
individual is proportional to that individual’s payoff π:

F = 1 − w + wπ . (1)

The parameter w ∈ [0, 1] denotes the intensity of selection. For w = 1, fitness
equals payoff. This scenario describes “strong selection”. For w � 1, the payoff
only provides a small perturbation to the overall fitness of an individual, a limit
known as weak-selection(Nowak et al., 2004). Weak selection is an important con-
cept for two reasons: (i) Many analytical results can only be obtained in the limit of
weak selection, but extend in good approximation to much larger values of w. (ii)
It is not unreasonable to assume that the fitness of an individual is the consequence
of many factors (and games) but only a particular game is under consideration here.
This assumption naturally leads to the “weak selection” scenario.

In this framework disadvantageous mutants have a small, yet non-zero probabil-
ity to reach fixation in a finite population. Conversely, it is not always certain that
advantageous mutants take over the entire population. Both effects become more
pronounced the weaker the selection intensity, and the smaller the population size.
Indeed, whenever the degree of stochasticity is high, these effects become impor-
tant and lead to a new concept of evolutionary stability (Nowak et al., 2004; Wild
and Taylor, 2004; Traulsen et al., 2006c).

Finite-size populations are an ever-present ingredient in individual-based computer
simulations which naturally incorporate stochastic effects. Moreover, instead of
studying the fixation probability of a single mutant in the limit of weak selection,
many individual-based simulation studies address the evolutionary fate of popu-
lations that contain a higher number of mutants at start. In this context, different
intensities of selection have been employed, ranging from strong selection, cap-
tured by the finite-population analogue of replicator dynamics (Hauert and Doe-
beli, 2004; Santos and Pacheco, 2005; Santos et al., 2006) to an extreme selection
pressure modeled in terms of the so-called imitation dynamics, used as a metaphor
of cultural evolution (Nowak and May, 1992; Huberman and Glance, 1993; Nowak
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et al., 1994; Zimmermann et al., 2005).

In this work we present an approach to investigate the evolution of cooperation as a
function of the initial fraction of cooperators present in the population at the start of
some evolutionary process, and as a function of the intensity of selection. As a re-
sult, we bridge the gap between the recently developed evolutionary game theory in
finite populations and common practice in individual-based computer simulations.
To this end we address the problem of the fixation of a given trait as well as how
long it takes for fixation to occur. We are particularly interested in investigating the
effects of stochasticity in the distribution of fixation times, and to which extent the
average fixation times provide an accurate description of the overall evolutionary
dynamics for different games and at all temperatures of selection.

We make use of a simple evolutionary dynamics which recovers the fixation prob-
abilities of the frequency-dependent Moran process in the limit of weak selection
but which, unlike the Moran process, enables us to study the fixation probability
for any value of the intensity of selection, all the way up to the extreme limit of
imitation dynamics. Under such strong selection, an individual with higher fitness
will always replace an individual with lower fitness. Evolutionary game dynamics
in finite populations has also been studied in a frequency dependent Wright Fisher
process (Imhof and Nowak, 2006). For further models of finite population game
dynamics, see (Riley, 1979; Schaffer, 1988; Fogel et al., 1998; Ficci and Pollack,
2000; Schreiber, 2001).

2 Evolutionary Dynamics in finite populations

Let us consider symmetric two-player games in which two types of individuals
interact via a payoff matrix

( A B

A a11 a12

B a21 a22

)
. (2)

In the simplest case, the payoffs of A and B individuals only depend on the fraction
of both types in the population. If there are i A individuals and N −i B individuals,
then the A and B individuals have payoffs πA = (i − 1)a11 + (N − i)a12 and
πB = ia21 + (N − i − 1)a22, respectively. Self interactions are excluded.

Here, we consider a process based on pairwise comparison between individuals.
Two individuals, A and B, are selected at random. The individual chosen for repro-
duction A replaces B with probability p, which depends on the payoff difference
πA − πB between the two individuals. The composition of the population can only
change if both individuals are of different types. We follow (Blume, 1993; Szabó
and Tőke, 1998; Hauert and Szabó, 2005) in choosing the Fermi function from
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statistical physics for p

p =
1

1 + e−β(πA−πB)
. (3)

The parameter β ≥ 0, which corresponds to an inverse temperature in statistical
physics, controls the intensity of selection and replaces w defined in Eq. 1. Small β
(high temperature) means that selection is almost neutral, whereas for large β (low
temperature), selection can become arbitrarily strong. With decreasing intensity
of selection β, the probability for reproduction of the advantageous type in the
population decreases from 1 to 1/2, selection becoming neutral for β = 0.

A major advantage of the pairwise comparison process over the frequency depen-
dent Moran process (Nowak et al., 2004) is that the payoff matrix can contain un-
restricted positive and negative entries, while for the frequency dependent Moran
process there is an inconvenient restriction because the fitness values have to be
positive. In contrast to the frequency dependent Moran process, the pairwise com-
parison process is invariant to adding a constant to all entries of the payoff matrix,
as it only depends on payoff differences. Multiplication of the payoff matrix leads
to a change of the intensity of selection.

The transition probabilities to change the number of A individuals from j to j ± 1
are given by

P±
j =

j

N

N − j

N

1

1 + e∓β(πA−πB)
. (4)

For weak selection, β � 1, we can expand the Fermi function and the transition
probabilities become

P±
j ≈ j

N

N − j

N

[
1

2
± β

4
(πA − πB)

]
. (5)

In the frequency dependent Moran process (Nowak et al., 2004), an individual is
chosen at random proportional to its payoff. Its identical offspring then replaces a
randomly chosen individual. This amounts to the transition probabilities

P +
j =

j(1 − w + wπA)

j(1 − w + wπA) + (N − j)(1 − w + wπB)

N − j

N
(6)

P−
j =

(N − j)(1 − w + wπB)

j(1 − w + wπA) + (N − j)(1 − w + wπB)

j

N
(7)

The expansion of these transition probabilities for weak selection, w � 1, leads to

P +
j ≈ j

N

N − j

N

[
1 + w

N − j

N
(πA − πB)

]
(8)

P−
j ≈ j

N

N − j

N

[
1 − w

j

N
(πA − πB)

]
(9)
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While these transition probabilities are different from Eq. (5) for weak selection,
the ratio P−

j /P +
j is identical for he frequency dependent Moran process and the

pairwise comparison process discussed here under weak selection. For w � 1, we
obtain for the frequency dependent Moran process

P−
j

P +
j

≈ 1 − w(πA − πB). (10)

For the pariwise comparison process, we obtain the identical result with w ↔ β. As
this ratio of transition probabilities determines the fixation probability (as discussed
below), both processes have the same fixation properties for weak selection.

2.1 Fixation probabilities

Under Pairwise Comparison, and in the absence of mutations, only when the two
individuals chosen have different strategies the total number of individuals with a
given strategy can change by one. This defines a finite state Markov process with
an associated tri-diagonal transition matrix, a so-called Birth-Death process (Karlin
and Taylor, 1975; Ewens, 2004). In general, the probability to reach the absorbing
state with 100% A given that the initial number of A individuals is k can be written
as

φk =

∑k−1
i=0

∏i
j=1 P−

j /P +
j∑N−1

i=0

∏i
j=1 P−

j /P +
j

. (11)

Here P +
j is the probability to increase the number of A individuals from j to j + 1

and P−
j is the probability to decrease that number from j to j−1 (cf. eq. 4). We use

the usual convention that
∏0

j=1 x = 1 for any x. Due to the sums of products in this
equation, a numerical implementation is prone to errors. In Traulsen et al. (2006b),
we have shown that the following analytical expression obtained by replacing the
sums by integrals constitutes an excellent approximation for the fixation probability
under the Pairwise Comparison rule:

φk =
erf [ξk] − erf [ξ0]

erf [ξN ] − erf [ξ0]
, (12)

where ξk is given by ξk =
√

β
u
(ku + v), 2u = a11 − a12 − a21 + a22 	= 0 and

2v = −a11 + a12N − a22N + a22, erf(x) = 2√
π

∫ x
0 dy e−y2

being the error function.
The fitness difference can be written as πA − πB = 2uj + 2v. The quantity u
measures the frequency dependence of payoffs: For u = 0, the fitness difference
is independent of the number of A and B individuals. For large N , the quantity v
measures the advantage of a A individual paired against a B individual compared
to the interaction of two B individuals.

Let us first consider the case of u > 0. The fixation probability can be approximated
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for weak selection, using the expansion of the error function, erf(x) ≈ 2x/
√

π −
2x3/(3

√
π) for x � 1. This expansion leads to the fixation probability

φk ≈ ξ0 − ξk

ξ0 − ξN

[
1 +

(ξN − ξk) (ξ0 + ξk + ξN)

3

]

=
k

N

[
1 + β(N − k)

u (N + k) + 3v

3

]
(13)

For k = 1, this is identical to the weak selection result for the frequency dependent
Moran process. This shows again the identity with this process for weak selection.
For u = 0, we find instead from Eq. (11) (or, equivalently, from Eq. (12) in the
limit u → 0)

φk =
e−2βvk − 1

e−2βvN − 1
, (14)

which is identical to the fixation probability of k individuals with fixed relative
fitness r = e2βv (Kimura, 1968; Crow and Kimura, 1970; Ewens, 2004). Eq. (14)
holds for all payoff matrices where a11 − a12 = a21 − a22, a condition known
as “equal gains from switching” (Nowak and Sigmund, 1990). For the Pairwise
Comparison process, it actually describes frequency independent selection, because
the payoff difference is constant. For weak selection, we can apply exp(x) ≈ x +
x2/2 and end up with

φk ≈ k

N
[1 + β(N − k)v] , (15)

which is identical to Eq. (13) for u = 0, as it should.

Finally, let us discuss the case of u < 0. In this case, Eq. (12) is still valid, but
the arguments ξj of the error functions are now imaginary with vanishing real part.
However, since erf(ix) = i erfi(x), where erfi(x) is the imaginary error function,
i cancels in the equation and the result is a real number which still fulfills 0 ≤
φk ≤ 1. For weak selection, the arguments of this function become small and the
imaginary error function can be approximated by erfi(x) ≈ 2x/

√
π + 2x3/(3

√
π)

for x � 1. This expansion leads again to Eq. (13).

In contrast to Eq. (11), the closed analytical fixation probability Eq. (12) can also be
approximated for very strong selection, β  1, using the appropriate asymptotics
of the error functions (Gradshteyn and Ryzhik, 1994). In the limit β → ∞ and for
u = 0 the fixation probability is given by φk = 1 − δk,0 for advantageous mutants,
v > 0, and φk = δk,N for disadvantageous mutants, v < 0. Here, δi,j denotes the
Kronecker symbol, which is one if both indices are equal and zero otherwise.

Eqs. (12) and (14) are approximations to Eq. (11) with an associated error of or-
der N−2. However, even for populations as small as N = 20 excellent agreement
with numerical simulations is obtained, as shown in Fig. 1, see also Traulsen et al.
(2006b). These expressions are valid for any pressure of selection and allow a
straightforward analysis of limiting cases: For β = 0, both equations (12) and
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(14) reduce to φk = k/N , the result for neutral drift (Kimura, 1968). For β � 1
we have weak selection and the linear term in β yields an approximation for the
fixation probabilities starting from an arbitrary number of mutants. Strong selec-
tion is described by β  1 and reduces the process to a semi-deterministic imita-
tion process. The speed of this process remains stochastic, but the direction always
increases individual fitness for β → ∞. This limit is outside the realm of the fre-
quency dependent Moran process and results from the nonlinearity of the Fermi
function.

2.2 Fixation Times

Since the evolutionary process in a finite population is intrinsically stochastic, the
system will always end up in one of the two absorbing states, corresponding to
100% individuals of type A or of type B. The average time tk that the system
spends in the transient states 1, . . . , N − 1 starting from k before it reaches fixation
in k = 0 or k = N is determined by the equation

tk = 1 + P +
k tk+1 + (1 − P +

k − P−
k )tk + P−

k tk−1. (16)

Three different fixation times are of interest. Two are conditional fixation times:
Given the the process reaches the state k = 0 with B individuals only, how long
does this process take? If instead the state k = N is reached, what is the associated
time? Finally, it is of interest also to find the unconditional fixation time, that is, the
time it takes until the process reaches any of the absorbing states k = 0 or k = N .
In the Appendix, we show that this average unconditional fixation time is given by

tk = φkSN − Sk, (17)

where

Sj = N2
j−1∑
n=1

χ−n
n+1

n∑
l=1

1 + χ−1
2l

l(N − l)
χl

l+1 (18)

and χl = exp [βlu + 2βv]. For neutral selection (β = 0), we have t1 = tN−1 =
2
∑N−1

l=1 l−1, which increases logarithmically with N . In general, the unconditional
fixation time tk increases with the distance to the absorbing boundaries. However,
when the intensity of selection is so high that the system will virtually always
reach fixation in a particular state, the unconditional fixation time can increase
monotonously towards the boundary at which fixation is not observed.

Adopting the theory outlined in (Antal and Scheuring, 2006), we can also compute
the conditional average number of time steps τ 0

k required to reach the absorbing
state 0 given that the state 0 is reached (and not state N). Such conditional fixa-
tion time τ 0

k increases with increasing k for all games, as the system always has to
pass states with lower k before fixation. For k = 0 we have τ 0

0 = 0, whereas τ0
k

diverges for k = N . Similarly, the average conditional time τ N
k to reach state N
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can be calculated. It is zero for k = N and increases with decreasing k, diverging
for k = 0, independently of the game. For general β, the average fixation times
can be computed numerically from Eqs. (17), (28) and (29) (see Appendix). On the
other hand, the average fixation times will only provide an accurate description of
the game dynamics to the extent that the probability distribution of fixation times is
sharply peaked around the average value discussed so-far. In the following we ex-
amine this issue by means of numerically exact simulations for concrete examples
involving different games and intensities of selection.

2.3 Examples

As a first example, we consider the Snowdrift Game (Hauert and Doebeli, 2004),
which is structurally identical to the Hawk-Dove game (Maynard Smith, 1982).
Two players choose simultaneously between cooperation (C) and defection (D). If
one of them cooperates, both obtain the benefit b. However, cooperation involves a
cost c < b, which is divided among the two players when both of them cooperate.
If both choose defection, their payoff is zero. The situation is characterized by the
payoff matrix

( C D

C b − c
2

b − c
D b 0

)
. (19)

The deterministic replicator equation for the Snowdrift game exhibits a stable inte-
rior equilibrium corresponding to a coexistence of cooperators and defectors. Any
initial condition where both strategies are present will lead to this stable equilib-
rium. However, in finite populations the system will ultimately end up in a state
where either C or D individuals have taken over the population. As illustrated
in Fig. 1, the fixation probability φk becomes arbitrarily high for strong selection
(β  1) and k < N . Hence, for strong selection, fixation of cooperators becomes
certain, as limβ→∞ φk = 1 for k > 0. However, a fixation probability of one may
be misleading. Indeed, although it is certain that the system will fixate in 100%
defectors, the time required to reach fixation may be arbitrarily large.

Similarly to what happens for large population sizes (Antal and Scheuring, 2006),
the fixation time increases exponentially with β. For β = 1, N = 20, b = 1 and
c = 0.5, the fixation time for a single cooperator in the Snowdrift Game is already
of the order of 109 elementary time steps. For β = 3, it reaches 1042 time steps. In
other words, a fixation probability of one is not very meaningful in view of the time
it would take to reach fixation. Such an increase of fixation time with increasing
intensity of selection only takes place in games with mixed Nash equilibria, as
shown in Fig. 2, in which the fixation time is plotted as a function of the initial
number of cooperators in the population for different selection pressures.

As a second example, we consider the Prisoner’s Dilemma. In the Prisoner’s Dilemma,
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two players choose again between cooperation and defection. Cooperation costs c,
leading to a benefit b > c for the other player. If both individuals cooperate, they
obtain the payoff b − c, whereas cooperation against a defector leads to a payoff
−c. On the other hand, a defector playing against a cooperator gets b. The payoff
matrix reads

( C D

C b − c −c
D b 0

)
. (20)

The fixation probability of cooperators decreases with increasing intensity of selec-
tion β. This can be inferred directly from our parametrization in which u = 0, as
cooperators are then equivalent to disadvantageous mutants in frequency indepen-
dent selection, for whom “fitness” decreases with increasing intensity of selection
β. Also the fixation time of defectors decreases with increasing β, as the proba-
bility for erroneous steps is reduced. However, with increasing β, the fixation time
departs from the neutral selection limit, β = 0, into the opposite direction as for
the Snowdrift game. The larger β, the shorter is the fixation time in the Prisoner’s
Dilemma (Fig. 2).

In summary, frequency dependent selection accelerates fixation compared to neu-
tral selection for 2 × 2 games with pure Nash equilibria. On the other hand, for
games with mixed Nash equilibria such as the Snowdrift Game, the fixation time
can increase exponentially. For increasing intensity of selection β the fixation time
decreases for the Snowdrift game and increases for the Prisoner’s Dilemma. When
the intensity of selection becomes small (β → 0), both games meet at the scenario
of neutral drift.

2.4 Stochastic effects on the fixation times

As shown in Figs. 2 and 3, a perfect agreement between the average fixation times
is obtained when comparing computer simulations with the theoretical results lead-
ing to Eqs. (17), (28) and (29) of the Appendix. However, taking into account the
intrinsic stochastic nature of the process, the right quantity to examine is the prob-
ability distribution of fixation times. To the extent that this probability distribution
is sharply peaked around the average fixation time, the theoretical results provide
an accurate description of the dynamical process. As usual, one expects the the-
ory outlined in the previous section to become more accurate for large populations,
since in that limit stochastic fluctuations are effectively suppressed.

In Fig. 4 we computed the probability distribution of fixation times for the cases
of neutral evolution, as well as for the Prisoner’s dilemma and the Snowdrift game
considered before in Fig. 2 (β = 0.05, population size N = 20). The results de-
picted provide an impressive account of the role of stochastic effects in what con-
cerns the fixation times, showing that the behaviour of the probability distribution
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does not depend solely on population size N , but, more importantly, depends sen-
sitively on the nature of the game and (naturally) on the intensity of selection.

For β = 0.05 and N = 20, the distribution of conditional fixation times in the Pris-
oner’s Dilemma is sharply peaked around the average fixation time. Only relatively
small deviations from this average time are observed. With decreasing intensity of
selection, β → 0, the probability distribution widens significantly. For neutral se-
lection, β = 0, very long fixation times can occur, leading to an average value that
is considerably larger than the most probable fixation time. Such an average value
is of limited information, as large deviations are possible. The situation becomes
dramatic in the snowdrift game, in which case the variance of the probability dis-
tribution actually exceeds the mean. The distribution is extremely flat and and a
wide range of fixation times can be observed. Such large fluctuations necessarily
question the usefulness of such calculations, not only in small populations, but also
as a function of the intensity of selection and the nature of the game. Under such
circumstances, stochastic effects provide such an overwhelming contribution to the
dynamics that the average fixation time has no longer any predictive meaning.

3 Games with more than two strategies

So far, we have only discussed 2 × 2 games and the associated fixation times. The
mathematical description of evolutionary game dynamics with more than two types
is more intricate, but there are several qualitative statements that one can make. For
the process introduced here, a strategy that is not present at some time will never
appear later, as there are no mutations that lead to new strategies. Hence, starting
from d types of individuals, one type will sooner or later go extinct. Then, the
dynamics of the system is restricted to a space of d − 1 strategic types. Ultimately,
an absorbing point is reached at which only a single type is present. This holds for
any type of game if the intensity of selection is finite.

If more than two types of individuals are described, one can introduce a mutation
rate which is so small that at most, two types are present in the population (Imhof
et al., 2005; Imhof and Fudenberg, 2006). In this case, one can again make use
of the fixation probabilities discussed here. Another possibility is to consider large
populations. Whereas N → ∞ leads to a deterministic replicator equation (given
that the intensity of selection is fixed), finite N leads to stochastic replicator equa-
tions. For the process here, the framework discussed in Traulsen et al. (2006a) can
be applied. For cyclic games in which the replicator dynamics predicts closed or-
bits as Rock-Paper-Scissors (Hofbauer and Sigmund, 1998), one can apply such an
approximation, introduce angular and radial coordinates and calculate the average
fixation time in finite populations, see Reichenbach et al. (2006) for details.
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4 Summary

We have introduced an alternative to the frequency dependent Moran process re-
cently proposed in evolutionary game theory (Nowak et al., 2004; Taylor et al.,
2004). Our new process leads to a simple, closed-form equation for the fixation
probabilities, which can be readily computed for any symmetric 2 × 2 game, for
any intensity of selection and any initial number of mutants. The intensity of se-
lection is measured by a quantity that resembles temperature in statistical physics.
It can be shown that a stochastic evaluation of payoffs in this process decreases
the intensity of selection (Traulsen et al., 2007). For high intensity of selection
(β → ∞) the process is quasi-determinisitic in following the gradient of selection.
For small intensity of selection (β → 0) the process converges to neutral drift and
allows to calculate correction terms to neutral drift linear in β. We have calculated
the average time for fixation, which agrees perfectly with numerical simulations of
the process. The time to fixation exhibits very large fluctuations. The average value
and the distribution of fixation times depends strongly on the payoff matrix of the
game. Even in small populations, the average time until fixation may become arbi-
trarily high. The distribution of fixation times is highly sensitive to both the nature
of the game and the intensity of selection. The distribution may be so wide that the
average fixation times no longer have any predictive meaning, leading to dynamical
evolutions devoid of a characteristic time scale.
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5 Appendix: Fixation Times

5.1 Unconditional fixation times

For the time tj to reach a fixation in state (0 or N) starting from state j, we have

tj = 1 + P +
j tj+1 + (1 − P +

j − P−
j )tj + P−

j tj−1, (21)
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which can be written as

σj =
P−

j

P +
j

σj−1 +
1

P +
j

, (22)

where σj = tj − tj+1 and t0 = tN = 0. In the remainder, the product of the
ratio of transition probabilities is written as

∏j
k=1 P−

k /P +
k = χ−j

j+1, where χj =
exp [βju + 2βv]. The transition probabilities can be written in terms of χj as

P±
j =

j

N

N − j

N

1

1 + e∓2β(uj+v)
=

j

N

N − j

N

1

1 + χ∓1
2j

, (23)

Iteration of Eq. (22) yields

σj = −t1χ
−j
j+1 + χ−j

j+1N
2

j∑
k=1

1 + χ−1
2k

k(N − k)
χk

k+1. (24)

For the fixation time, we obtain tj = t1 −∑j−1
k=1 σk. For the unconditional fixation

time, we have t0 = 0 and tN = 0, as fixation has already occurred. With tN = 0, t1
can be calculated as

t1 = φ1N
2

N−1∑
j=1

χ−j
j+1

j∑
k=1

1 + χ−1
2k

k(N − k)
χk

k+1. (25)

The average unconditional fixation time is finally given by

tj = φjSN − Sj , (26)

where

Sj = N2
j−1∑
n=1

χ−n
n+1

n∑
k=1

1 + χ−1
2k

k(N − k)
χk

k+1. (27)

5.2 Conditional fixation times

The average conditional fixation times can be computed in an analogous way, as
shown in Antal and Scheuring (2006). Here, we just outline the results. The average
time τ 0

i to reach the absorbing state state 0 starting from i, given that it is reached
and not the other absorbing state N , is

τ 0
i =

1

1 − φi

(QN − Qi) − QN , (28)

where φi is the probability to end up in N starting from i, cf. Eq. (11), and

Qi = N2
i−1∑
n=1

χ−n
n+1

n∑
k=1

(1 − φk)
1 + χ−1

2k

k(N − k)
χk

k+1.endequation

12



Similarly, the conditional average time τ N
i to reach absorbing state N (and not state

0) is given by

τN
i =

1

φi
(R0 − Ri) − R0, (29)

where

Ri = N2
N−1∑

n=i+1

χ1−n
n

N−1∑
k=n

φk
1 + χ−1

2k

k(N − k)
χk

k+1. (29)
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Caption to Figure 1 Fixation probabilities in a population of size N = 20. Sim-
ulation results (symbols) obtained from averaging over 106 realizations coincide
perfectly with the theoretical result, Eq.(12) (solid lines). Arrows indicate increas-
ing intensity of selection. For neutral selection (diamonds), the fixation probability
is given by the fraction of cooperators. In the Prisoner’s Dilemma, fixation of co-
operators becomes less likely with increasing intensity of selection, as shown for
β = 0.05 (squares) and β = 0.1 (circles). Only for weak selection and a high initial
number of cooperators, they have reasonable chances. In the Snowdrift Game, the
fixation probability of cooperators increases with increasing intensity of selection,
as the internal equilibrium is closer to pure cooperation. Here, the fixation probabil-
ities are shown for β = 0.05 (squares) and β = 0.1 (circles). However, the fixation
time of defectors increases accordingly, see Fig. 2 (b = 1, c = 0.5).

Caption to Figure 2 Conditional fixation times for fixation of defectors in a pop-
ulation of N = 20. Symbols show simulation results whereas lines depict the fix-
ation times obtained according to Eq. (28). Arrows indicate increasing intensity
of selection. For neutral selection (diamonds), the fixation time increases with the
initial number of cooperators k, as the distance to the point of fixation increases.
In the Snowdrift Game, fixation times increase with increasing selection intensity
(squares β = 0.05, circles β = 0.1), as the system spends much time near the in-
ternal Nash equilibrium. On the contrary, for the Prisoner’s Dilemma, now stronger
selection leads to faster fixation (squares β = 0.05, circles β = 0.1). Here, increas-
ing selection intensity induces opposite behaviour for both games in what concerns
the average fixation times and the fixation probability, although this is not the case
in general (b = 1, c = 0.5, averages over 106 realizations).

Caption to Figure 3 Unconditional fixation times in a population of N = 20.
Lines show the theoretical result from Eq. (17) whereas symbols are results from
computer simulations. Arrows indicate increasing intensity of selection. For neu-
tral selection (black diamonds), the fixation time increases with increasing distance
from the absorbing states. For the Snowdrift Game, fixation times increase with
increasing intensity of selection (squares β = 0.05, circles β = 0.1). For the
Prisoner’s Dilemma, the fixation time increases with the number of cooperators
(squares β = 0.05, circles β = 0.1), which results from the high fixation proba-
bility in 100% defection. Hence, only close to 100% cooperation, the fixation time
decreases (symbols as in Fig. 2, b = 1, c = 0.5, averages over 106 realizations).

Caption to Figure 4 Probability distributions of the conditonal fixation times of a
single defector in a population of cooperators. While the average fixation times (ar-
rows) agree well with simulations, as shown in Fig. 2, the probability distributions
can become extremely broad. For the Prisoner’s Dilemma and for neutral selec-
tion, the deviations of the fixation time from the average are comparably small.
However, for the Snowdrift game an extremely wide range of fixation times is ob-
served. Hence, the average fixation time is of limited interest, as large deviations
are observed with a very high probability (N = 20, β = 0.1).
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