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We study evolutionary dynamics in a population whose structure is defined in terms of two graphs: the
interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies
the structure of evolutionary competition. We investigate the evolution of cooperation modeled in terms of social
dilemmas associated with symmetric 2× 2 games played in finite populations and show that it is always harder
for cooperators to evolve whenever the interaction graph and the replacement graph do not coincide. In the
thermodynamic limit, we show that the dynamics taking place on both graphs is given by a replicator equation
with a rescaled payoff matrix in a rescaled time, a result which is valid for general symmetric m×m games with
m ≥ 2. Our analytical results are obtained using the pair-approximation method in the limit of weak selection,
whose validity is checked by exact computer simulations.

PACS numbers: 87.23.-n 87.23.Kg 89.75.Fb

The recent availability and systematic characterization of
empirical data specifying the networks of contacts between
individuals of a given community or population [1, 2] has
spurred a renewed interest in the study of dynamical pro-
cesses in structured populations [1–16]. In this context, in-
vestigation of evolutionary game dynamics constitutes a very
appealing and widely used framework, from physics to po-
litical science [1–16]. The traditional approach to evolution-
ary game dynamics involves the replicator equation, which
describes deterministic dynamics in infinitely large popula-
tions [17]. When populations are finite, the impact of stochas-
tic effects should not be overlooked [18, 19], and many novel
insights have been gained recently by bridging the gaps be-
tween stochastic and deterministic dynamics and between fi-
nite and infinite populations [20, 21]. In particular, the study
of stochastic dynamics in finite populations has received a lot
of attention (for a review, see [15]).

However, population structure is often more complex than
that emerging from a single static graph description[1]. In-
deed, individuals do not usually rely on a single network to
carry out their decisions, (strategic) decision making being of-
ten based on additional information about the interacting part-
ner, obtained via (gossip, rumor, etc.) networks which rarely
overlap perfectly with the network of interactions. Similarly,
seldom our role models are those we have the possibility to
interact with regularly. Finally, our network of close friends
often bears little resemblance with the network of our profes-
sional relations, similarly to what one observes in the animal
world, where grooming and other manifestations of close re-
lationship are usually established among kin, despite the fact
that often fitness is acquired via interaction with the non-kin.
Hence, consideration of dynamical processes in more than a
single network constitutes an important ingredient which has
been ignored so-far, and which may be of relevance to other
processes such as rumor spreading, traffic regulation, and epi-

demic modeling, to name a few. In this work we explore a first
step toward the inclusion of these more sophisticated layers of
population structure, by explicitly distinguishing two types of
graphs defining the networks of contacts between individuals:
the interaction graph, H , determines who-meets-whom in an
evolutionary game; the replacement graph, G, specifies evo-
lutionary updating or, in a social context of cultural evolution,
the network defining who-is-the-role-model-of-whom. Both
graphs have the same vertices, where each vertex is occupied
by one individual, with no empty vertices. The graphs H and
G may differ in their edges, however. Hence we break the
symmetry between these two types of graphs, compared to
the more traditional approach, in which the two graphs coin-
cide. This simple model allows us to explore the new features
associated with this richer and more powerful representation
of population structure, and also allows us to derive approx-
imate analytical results whose validity is assessed by means
of computer simulations. It will be concluded that, whenever
the symmetry between graphs H and G is broken, it is harder
for cooperators to thrive compared to the case when the two
graphs coincide. More realistic implementations should also
take into account that strategies and structure co-evolve with
variable time-scales [22, 23], a feature which may preclude
the derivation of explicit analytical results, such as those de-
rived here.
Let us consider social dilemmas associated with symmetric
2 × 2 games with two pure strategies, cooperators C and de-
fectors D, with associated payoff matrix Φ whose entries rep-
resent the payoffs for the row player:

( C D

C R S
D T P

)
. (1)

R is the reward for mutual cooperation, P is the punishment
for mutual defection, T is the temptation to defect, and S is
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FIG. 1: (color online) Solid blue lines belong to the interaction graph
H , with connectivity h; dashed red lines belong to the replacement
graph G, with connectivity g; double lines (dashed red and solid
blue) define the overlap graph L, with connectivity l. In the example
shown, all graphs are random and homogeneous [31]. The proce-
dure to generate them is straightforward: given values of h, g, l, we
start by constructing a random regular graph [31] of degree g, en-
suring that it is connected. Subsequently, we augment this graph by
increasing the connectivity of all nodes by h − l, such that G has
connectivity g, H has connectivity h and L has connectivity l.

the sucker’s payoff. Different orderings of these four payoff
values define three well-known social dilemmas: The pris-
oner’s dilemma (PD) (T > R > P > S), the snowdrift
game (SG) (T > R > S > P ), and the stag-hunt game
(R > T > P > S) [8].

Each individual uses either strategy C or D, which she
plays with all her immediate neighbors in the interaction
graph, H , accumulating a total payoff Π. The fitness is given
by F = 1−w + wΠ. Here 0 ≤ w ≤ 1 represents the relative
contribution of the game to fitness. If w = 1 then the payoff
is equal to fitness. This is the case of ‘strong selection’. If
w = 0 then the game is irrelevant for fitness; all players have
the same fitness. This is the case of ‘neutral drift’. Throughout
this paper we study the limit of ‘weak selection’ [18], w ≪ 1,
which can be justified in different ways: First, in most real
life situations we are involved in many different games[1], and
each particular game only makes a small contribution to our
overall performance. Second, weak selection leads to impor-
tant analytic insights which are often not possible for strong
selection (for an exception, see Ref. [19]). Simulations sug-
gest, however, that these results are usually good approxima-
tions for larger values of w [9]. Whereas fitness is acquired
through the interaction graph H , updating dynamics proceeds
on graph G. Following Ref. [9] we adopt Death-Birth (DB)
updating: A random individual is chosen to die; the g neigh-
bors in the replacement graph compete for the empty site pro-
portional to their fitness. Reproduction can be genetic or cul-
tural. In general, however, different update mechanisms may
be of relevance [24, 25]. Details of the present framework

and its extension to other update mechanisms and to games in
infinite structured populations, involving an arbitrary (finite)
number of strategies will be published elsewhere [25].

In a finite population of size N , a relevant quantity to con-
sider is the fixation probability, defined as the probability that
a mutant invading a population of N − 1 resident individuals
will produce a lineage which takes over the whole popula-
tion [18, 26, 27]. We denote the fixation probability of strat-
egy X (=C or D) in a Y -population (=D or C, respectively)
by ρX . For a neutral mutant ρC = 1/N . If ρC > 1/N , then
natural selection favors the fixation of strategy C. In order to
derive an analytical result for the fixation probabilities, we re-
sort to the diffusion approximation under weak selection, e.g.,
Nw ≪ 1 with N ≫ max{g, h}, where g, h and l are defined
in Fig. 1.

Let xX denote the global density of strategy X (=C or
D). Let T+

C (T−
C ) be the probability that the number of C-

strategists increases (decreases) by one in each update event.
The probability φC(yC) that strategy C ultimately takes over
the whole population, when its initial frequency is yC , is given
as the solution of the backward Kolmogorov equation [28]

0 = m(y)
dφC(y)

dy
+

v(y)
2

d2φC(y)
dy2

, (2)

where m(xC) = T+
C − T−

C is the mean of the increment of
xC per unit time and v(xC) = (T+

C + T−
C )/N is the variance

of the increment of xC per unit time. From this equation, the
fixation probability is calculated as ρC = φC(1/N). Hence,
we need to calculate T+

C and T−
C .

Clearly, the state of the population can no longer be de-
scribed in terms of global densities of strategies, xC and xD

(mean-field approximation). In each particular configuration
of the population, each vertex can be either occupied by an C
or a D individual. There are 2N possible configurations on a
graph, a huge number for large N . Here we adopt the pair-
approximation method [29, 30] in order to describe the lo-
cal configurations of strategies on graphs. Pair-approximation
considers not only frequencies of strategies, but also frequen-
cies of (connected) strategy-pairs which enables us to estimate
the correlation of strategies in two adjacent nodes. We have
three different types of pairs: those connected only through G,
those connected only through H , and those connected through
both graphs. We label each of them (G), (H), or (L), respec-
tively.

Let qX|Y be the conditional probability that the focal node
is occupied by strategy X (=C or D) given that strategy Y
(=C or D) occupies the adjacent node. This conditional prob-
ability depends on the type of edges connecting X and Y .
Therefore, we need to distinguish q

(G)
X|Y , q

(H)
X|Y , and q

(L)
X|Y . In

the weak selection limit, we expect these ‘local’ conditional
probabilities to equilibrate much faster than global frequen-
cies of strategies, xX , since the latter will equilibrate at a
speed of order w. Hence, the system reaches a local steady
state characterized by the following values for the local fre-
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quencies, independent of the update dynamics [25]

q
(H)
X|Y = xX , q

(G)
X|Y = q

(L)
X|Y =

g − 2
g − 1

xX +
1

g − 1
δX,Y . (3)

The intuition behind these expressions is the following. It is
obvious that correlations between two adjacent nodes build up
only through G, and not via H . Hence, the local conditional
probability q

(H)
X|Y is given by its global frequency, xX . Regard-

ing the other edges, (G) and (L), with probability 1/(g − 1) a
player shares a common ancestor with his neighbor. With the
remaining probability, (g − 2)/(g − 1), his neighbor is a ran-
dom individual. With these values for the local probabilities,
we can calculate T+

C and T−
C . For DB updating the condition

ρC > 1/N leads to the equation

g2h(R+2S−T−2P ) > gl(2S−2R+P−T )+l(S−R−P+T )
(4)

and

ρC > ρD ⇐⇒ (gh + l)(R − P ) > (gh − l)(T − S) . (5)

Let us now apply the general results above to the two-
parameter PD; a cooperator, C, pays a cost c for every edge,
and the partner of this edge receives a benefit b > c. Defec-
tors, D, pay no cost and distribute no benefits. Hence, T = b,
R = b − c, P = 0 and S = −c. From eqs.(4) and (5) we find
that that ρC > 1/N > ρD if

b

c
>

hg

l
. (6)

The inequality above, which is valid for DB updating
only [25], suggests that for fixed b and c, the optimum config-
uration for evolution of cooperation occurs when h = g = l.
The degree l of the overlap should be as large as possible,
while the degrees h and g should be as small as possible. This
optimum is reached when the replacement graph and the in-
teraction graph are identical. In this limit we recover our pre-
vious condition, b/c > k (using k = h = g = l) [9]. Any
deviation from the identity between the interaction and the re-
placement graphs makes evolution of cooperation more diffi-
cult. Note also that cooperation is never favored if the overlap
between interaction and replacement graphs is empty (l = 0).
Furthermore, the critical threshold condition (6) is symmetric
in the degrees of the replacement and interaction graphs, g and
h. Therefore, a highly connected replacement graph (large g)
and a sparsely connected interaction graph (small h) have the
same threshold as the reverse situation (for a fixed overlap l).

The results obtained, however, strongly depend on the game
under study. Let us now discuss the social and biologically
relevant SG[4], parameterized in terms of costs and bene-
fits. In the SG a cooperator pays a cost c, but two cooper-
ators share this cost. Whenever one player cooperates, both
receive a benefit b > c. Hence, T = b, R = b − c/2,
S = b − c and P = 0. Now the condition ρC > 1/N
leads to b/c > [5/2 − x − x/(2g)]/[2 + x − x/g], and be-
comes always easier to fulfill than ρC > ρD which now reads
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FIG. 2: (color online) Analytical versus numerical calculation of fix-
ation probabilities. We consider populations of size N = 100 (upper
panel) and N = 500 (lower panel). We generate 3 × 103 graphs
G and H compatible with fixed (h, g, l), and run 5 × 103 simula-
tions for each graph. We compute the average fixation probability
of a single cooperator in a population of defectors. w = 0.1 in all
cases. The intersection between vertical lines and the horizontal lines
at 1/N provide the values predicted analytically by eq.(6), given in
brackets, for each triplet h, g, l. Symbols provide the results of nu-
merical simulations. Note that all datasets have been rigidly shifted
by the amounts indicated in the panels, reflecting the finite size ef-
fects which scale as 1/N . Color and line symbols are the same in
both panels.

b/c > (3−x)/(2+2x), where x = l/gh. Similarly to the PD,
selection will be more favorable to cooperators if the overlap
is maximized. Unlike the PD, however, cooperators may now
become advantageous even if the overlap l is zero. Further-
more, ρC > 1/N is no longer symmetric in g and h: As a
result, it is better to have more role models than interaction
partners in the SG.

The pair approximation is only valid for infinite Bethe lat-
tices (or Cayley trees) where each node has exactly the same
number of links and there are no loops or leaves. How-
ever, it was found in Ref. [9] that, under weak selection,
pair-approximation works extremely well for random regu-
lar graphs and other structures, despite deviations found for
scale-free graphs. We shall test the validity of eq.(6) by
means of numerical simulations for the PD on random reg-
ular graphs [31], which lead to population structures such as
those illustrated in Fig. 1.
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The results are shown in Fig. 2. An excellent agreement
with the theoretical predictions is obtained. In particular, the
numerical simulations confirm the invariance of the condition
above upon exchange of h and g. Finite size effects account
for the rigid shift of ≈ 0.018 toward lower values of c/b for
N = 100 and of ≈ 0.0035 for N = 500 between the sim-
ulation results and the theoretical predictions, which suggest
a 1/N dependence and an overall insensitivity to the specific
values of g, h and l. Hence, as the population size increases,
the agreement between the pair-approximation-based predic-
tions and computer simulations improves. In practice, for a
given finite value of N we need b/c to be slightly larger than
the thresholds predicted by our analytical calculations.

Finally, we discuss the implications of breaking the sym-
metry between interaction and replacement in what concerns
the thermodynamic limit. When N → ∞ the description be-
comes deterministic, since the variance v(y) goes to zero as
1/N . Hence, the rate of change of the global frequency of
cooperators xC is given by ẋC = T+

C − T−
C . Here we shall

discuss the results for 2 × 2 games, although the main results
remain valid for m strategies interacting via general m × m
symmetric games [25], for which the replicator equation in a
well-mixed population reads[13],

ẋi = xi(ei · Φx − x · Φx), (7)

i = 1, · · · , m, where ei is the i-th unit column vector,
whereas x = (x1, · · · , xm)T. For the general social dilem-
mas defined in eq.(1) and keeping only the linear terms in w
in T+

C − T−
C (weak selection) we obtain [32]

ẋC = τxC

[
eC · (Φ + Ψ)x − x · (Φ + Ψ)x

]
(8)

where the matrix Ψ reads

( C D

C 0 σ
D −σ 0

)
; σ =

l[(g + 1)R + S − T − (g + 1)P ]
g2h − (g + 2)l

(9)
and the time scale constant reads τ = w(g − 2)(g2h − (g +
2)l)/[g2(g − 1)]. Eq.(8) has precisely the form of a replicator
equation (7) with time re-scaled by the constant τ and an ef-
fective payoff matrix given by Φ+Ψ. Naturally, the matrix Ψ
will depend on the update mechanism employed. However, it
can be shown that this matrix is always anti-symmetric, even
in the case of m × m games with m > 2 [25].

To summarize, breaking the symmetry between interaction
and replacement graphs makes it harder for cooperation to
evolve in the prisoner’s dilemma in which, for cooperation
to thrive, it is important that our interaction partners are also
our role models. By studying the limit of weak selection, and
making use of the pair approximation, we were able to provide
simple conditions under which a cooperator becomes advanta-
geous when immersed in a population of defectors. Compari-
son with exact computer simulations shows that, apart from
population size effects, which scale as 1/N , the analytical
conditions fit nicely the numerical results.

In infinite, structured populations, and in the limit of weak
selection, strategies evolve according to a replicator equa-
tion. The effect of population structure is now to induce a
transformation of the payoff matrix which affects solely its
off-diagonal elements. Once such a transformation is per-
formed, then evolution proceeds ”as if” the population were
well-mixed (unstructured).
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