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Abstract

Direct reciprocity relies on repeated encounters between the same twauads. Here
we examine the evolution of cooperation under direct reciprocity in dyndmgtauctured
populations. Individuals occupy the vertices of a graph, underg@pgated interactions
with their partners via the edges of the graph. Unlike the traditional apjprtoasvolution-
ary game theory, where individuals meet at random and have no coméiolhe frequency
or duration of interactions, we consider a model in which individuals diffethe rate
at which they seek new interactions. Moreover, once a link between tviidodls has
formed, the productivity of this link is evaluated. Links can be brokentoffifferent rates.
Whenever the active dynamics of links is sufficiently fast, population streidaads to a
simple transformation of the payoff matrix, effectively changing the gamecwhsidera-
tion, and hence paving the way for reciprocators to dominate defecterde¥e analytical
conditions for evolutionary stability.
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1 Introduction

Game theoretic ideas were first introduced to biology by Hiami(1964) and
Trivers (1971), but the field of evolutionary game theory ¥easded by Maynard
Smith and Price (1973) and Maynard Smith (1982). The refgiaaquation (Taylor
and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980)iaaestthe mathemat-
ical foundation of evolutionary game dynamics. It is a syst& ordinary differ-
ential equations describing how the relative abundancequéncies) of strategies
change over time as a consequence of frequency dependecti@el The payoff
from the game is interpreted as biological fitness. Indigldueproduce propor-
tional to their fithess. Reproduction can be genetic or caltdihe expected payoff
of an individual is a linear function of the frequencies dfsdtategies; the coeffi-
cients of this function are the entries of the payoff matF&r detailed reviews of
the replicator equation and other approaches to evolutjogame dynamics, see
Fudenberg and Tirole (1991), Weibull (1995), Samuelsor®9{)9Hofbauer and
Sigmund (1998, 2003), Gintis (2000), Bowles (2003), Cress(@803), Nowak
and Sigmund (2004) and Nowak (2006a).

The act of cooperation typically involves a cesto the provider and a benetfit
to the recipient. In the absence of a specific mechanism ®etiolution of co-
operation, natural selection favors defectors. There ateast five mechanisms
that can lead to the evolution of cooperation: kin selegtgyoup selection, direct
reciprocity, indirect reciprocity and network reciprgc{tgraph selection).

In this paper, we study the interaction between direct amaaré reciprocity; how-
ever, unlike conventional network reciprocity, as definedNowak (2006b), here
the network is adaptive, as discussed below. The study oétbkition of coop-
eration under direct reciprocity on dynamical networksettess special attention,
given the recent results which show that co-evolution ofytaion structure with
individual strategy provide efficient mechanism for thelation of cooperation
under simple one-shot games (Pacheco et al., 2006a,b;sSatrdb, 2006d).

Direct reciprocity is based on the idea of repeated encosittetween two indi-
viduals (Trivers, 1971) according to the principlé,stratch your back and you
scratch min& The game theoretic framework of direct reciprocity is tepeated
Prisoner’s Dilemma (PD), which has been the subject of noosestudies across
various disciplines (Rapoport and Chammabh, 1965; AxelrodHenailton, 1981,
Axelrod, 1984; Selten and Hammerstein, 1984; Milinski, 1.98lay, 1987; Ax-
elrod and Dion, 1988; Fudenberg and Maskin, 1990; Imhof.e2805). A large
number of strategies for playing the repeated PD have bealyzad. The most
prominent ones are tit-for-tat (Axelrod, 1984), genertitsfor-tat (Nowak and Sig-
mund, 1992), contrite-tit-for-tat (Sugden, 1986; Boet|il997) or win-stay, lose-
shift (Nowak and Sigmund, 1993).



In general, it is a very difficult task to find successful stgaés for playing the
repeated PD (Axelrod, 1984; Kraines and Kraines, 1988; Roelg and Maskin,
1990; Lindgren, 1991). But if what we want is to investigateabperation has any
chance to evolve by direct reciprocity at all, then a verydamgame can be studied.
We only need to consider two strategies: Unconditionalatefe (D), defect all the
time; Reciprocators (R) start cooperating and then contiogedperate as long as
the opponent cooperates, but defect if the opponent defeatdh individuals can
be thought of as playing a strategy like tit-for-tat or Grihit-for-tat cooperates on
the first move and then does whatever the opponent has dohe pretvious move.
Grim cooperates until the opponent defects once and thengmemtly switches
to defection. Despite the difference between these twdesfies, when playing
against an unconditional defector, tit-for-tat and griradeo the same sequence
of cooperation in the first round and unconditional defecfimm then on. Only
if errors or more complex strategy sets are consideredgrdifices between the
strategies arise. Hence, a Reciprocator will only cooperate against a defector
and will behave as an unconditional cooperator againshan®&eciprocator.

Let us denote by the probability of playing another round. The average numbe
of rounds between the same two players is given iy — w). The payoff matrix
for reciprocators R) versus unconditional defector®J is given by

R D

b—c
R —c
D b 0

that is, reciprocators pay the casonce, and unconditional defectors receive the
benefitb only once.

One-shot and repeated games on spatial lattices have lneggdsby many authors
(Nowak and May, 1992, 1993; Wilson et al., 1992; Nowak et¥094; Lindgren
and Nordahl, 1994; Killingback and Doebeli, 1996; Nakametral., 1997, 1998;
van Baalen and Rand, 1998; Spabnd Toke, 1998; Hauert et al., 2002; Szab
and Hauert, 2002; Brandt et al. , 2003; Hauert and Doebeli42b@uert and
Szald, 2005; Szab et al., 2005; Nowak, 2006a; Szaland Rth, 2007). Evolu-
tionary graph theory is an extension of this approach to igg¢m®pulation struc-
ture and networks (Lieberman et al., 2005; Pacheco and §20105; Santos and
Pacheco, 2005; Santos et al., 2005, 2006a,b; Santos andd@a&®06; Ohtsuki
and Nowak, 2006a,b, 2007; Ohtsuki et al., 2006, 2007a,hdacet al., 2006a,b).
Itis usually assumed that the population structure is @ntsn the time scale of the
evolutionary updating. Recently, Ohtsuki and Nowak (200%)ehinvestigated the
evolutionary feasibility of cooperation under direct gaicity for static networks.
The combination of direct reciprocity with (static) netwaeciprocity was shown
to open the way for reciprocators to invade (even when rareduditional defec-
tors, which is never possible in a well-mixed populationeTéffect of network



reciprocity is strongest if people have few neighbors (ondfst interactions occur
only with a subset of ‘very close friends’). In many real-Vdosocial and biological
networks (Amaral et al., 2000; Dorogovtsev and Mendes, 20@§, 2006; Santos
et al., 2006d), however, the average connectivity of irtiials is not small.

In addition to static networks, one-shot-games on dynargieghs have also been
investigated (Bala and Goyal, 2000; Skyrms and Pemantld); Zlthmermann et
al., 2004; Egtluz et al., 2005; Santos et al., 2006d). It has been recshibyn
(Pacheco et al., 2006a,b; Santos et al., 2006d) that th&tion to small connec-
tivity may be overcome if one evolvesmultaneouslyndividual strategy and pop-
ulation structure. Here we investigate the impact of cowgian of strategy and
structure in the evolution of cooperation under directpeugtity.

In Section 2 we introduce relevant concepts of evolutiogarye dynamics in finite
and infinite populations, as well as results related to tneiprocity in well-mixed

populations. In Section 3 we introduce the model of actinkitig dynamics, in

which individuals seek new partners and break existingdtedifferent rates. In
Sections 4 and 5 we discuss our results for direct recigracitdynamical graphs.
In Section 6 we offer conclusions.

2 Evolutionary stability and risk-dominance in well-mixed populations

Consider a game between two strategiesnd B, given by the payoff matrix

A B
Alflp P
B ( AA AB > . (2)

PBA PBB

An infinitely large population ofA players cannot be invaded by players if
paa > Pra, thatis,A is both a strict Nash equilibrium and an Evolutionarily S¢ab
Strategy (ESS). In amfinite well-mixed population, both strategies are ESS when-
everpaa > ppa @andpap < ppp. The replicator equation (Taylor and Jonker, 1978;
Hofbauer et al., 1979; Weibull, 1995; Hofbauer and Sigmue®8) admits an un-
stable mixed equilibrium, located @t = (ppp —pan)/(Pas —PaB —PBA+DBB),
wherez* is the equilibrium frequency of A players in the populati@irategyA

is Risk-Dominant (RD) if it has the bigger basin of attractitmat is, whenever

DPAA +DPAB > PBa + PBB-

In finite, well-mixed populations, a crucial quantity is the fixatiprobability of
a strategy, that is, the probability that the lineage agishom a single mutant of
that strategy will take over the entire population (Nowaklet2004; Taylor et al.,
2004). Ifpaa + 2pan > pea + 2ppp then the fixation probability of strategy is



greater than the fixation probability of a neutral mutant\). This means selection
favors the replacement @ by A, and therefore a singlé-player in a population
of B-players is an advantageous mutant. The condition can bressed as &/3-
rule: if the fitness of the invading at a frequency of /3 is greater than the fithess
of the resident3 then the fixation probability ofl is greater thari /N (Nowak et
al., 2004; Imhof and Nowak, 2006; Ohtsuki et al., 2007c) sTdondition holds in
the limit of weak selection where the payoff from the gamemsit compared to a
constant background fitness. Furthermored i ‘risk dominant’ (RD) compared
to B, then the fixation probability ofl is greater than the fixation probability of
B for weak selection and large population size (Nowak et &042 Imhof and
Nowak, 2006).

Given the payoff matrix associated with direct recipracgty. (1), we can immedi-
ately write down the following conditions (Ohtsuki and Ndwa007):

The reciprocator strategy is an ESS if

oI

(32)

SH

In this case, a defector in an infinitely large population @bgerators has a lower
fitness. The unstable fixed point is located at

R (3b)

b—c w

In a finite population, however, it is still possible that tlirxation probability of
a single defectoryp, is greater than that of a neutral mutaht). Hence, if we
want defectors to be disadvantageous, we must require@that 1/N. For weak
selection and large population size the condition readssi@hand Nowak, 2007)

§>3—7w. (3c)

c 2w

In this case, the basin of attraction of reciprocators isgethanl /3. Reciproca-
tors become RD when

b 2-—

o> (3d)

C w
that is,pr > pp for large populations and weak selection. Finally, reatators
become advantageousdf, > 1/N; for large populations and weak selection, this

is equivalent to (Ohtsuki and Nowak, 2007)

b 3—2w

C w

(3e)



3 Basic model and transformation of payoff matrices

Let us study a game between two strategieand B, in a population of fixed size,
N. There areV, players who use strategy, and Nz players who use stratedy.

3.1 Unconditional strategies in finite, well-mixed popubats

First consider the case without dynamical linking or coodiél strategies. Strate-
gies A and B are unconditional and pure strategies of 2he 2 game with payoff

matrix
A B

A [ paa pas
. 4
B (pBA DBB “)

In each round of the gamd, players choose actiad, andB players choose action
B. Suppose that players keep playing the game with all otrereps simultane-
ously. EachA-player interacts withV, — 1 many A-opponents andz many B-
opponents. EacB-player interacts withV,, many A-opponents and/z — 1 many
B-opponents. When it takes an amount of tirgdor players to complete a round
of game, the payoffs per unit time are calculated as

W= (Ny — 1) | N, PAB
Wp = NJ224 4 (N — 1)EPEE,
70 70

If N, andNp are large, we can negleetl in eq.(5) and we obtain

Wi N [paa paB) [Ta
N . ©
Wg 70 \ppa pee) \78

Herex 4 andz g represent relative abundances of strategled B, namely,x 4, =
NA/N, rp = NB/N, such thatI)A +xp=1.

3.2 Unconditional strategies in populations with dynamiaaking

Next we incorporate the effect of dynamical linking into thayoff matrix. Con-
sider two players in the population. These players are alp&ly games only when
there is a link between them. It is possible for a player teehaultiple links and to
play games with different partners at the same time.d,gtepresent the average
fraction of time a link is present between &a- A, B)-player and gj(= A, B)-



player. In this case, the payoffs per unit time become

Wy = (Na— 1)¢AA% + NBQSAB@;
T0 To (7)
Wgp = NACbBApiA + NBCZSBB@-
T0 T0
We have
Wal N [0aapas ¢appap | [2a ®)
Wpg 70 \¢pappa oEPEE) \T8B

Equation (8) suggests that the linking dynamics introdacgisple transformation
of the payoff matrix. We can study standard evolutionary galynamics using the
modified payoff matrix (Pacheco et al., 2006a,b).

The fractions of time that different types of links are aetiy, are calculated as
follows. Links are formed at certain rates and have spedféetimes. Denote by
X (t) the number ofd A links at timet. Similarly, Y (¢) andZ(t) denote the number
of AB andBB links at timet. The maximum possible number A, AB andBB
links is respectively given by

X = Na(Ny—1)/2
Y,, = NaNg (9)
Zm = Np(Ng —1)/2
Supposed and B players have a propensity to form new links denotedvlyand
ag, such thatd A links are formed at a rate?, AB links are formed at a rate o

and BB links are formed at a rate%. Also suppose that the average life-times of
links are given byras, Tap andrgg (> ).

Linking dynamics can then be described by a system of thréi@any differential
equations for the number of links (Pacheco et al., 2006a,b):

9 1

X =X, — X)— —X,
TAA
: 1
Y =agap(V, —Y)— —Y, (10)
TAB
: 1
7 =ay(Zym—Z)— —Z.
TBB

In the steady state, the number of links of the three diffetygres is given by

2
X* o QATAA X
- 2 m»
ayTaa+1
QAQXBTAB
yr = JALBTAB y (11)
ap0pTap + 1
2
Z* o aBTBB
o+ 1™
B'BB



Hence we may write

POPREE. S LV
X, C5124TAA + 1’
Y= QAQBTAB
Y TAB 12
OaB = OBA Y. " anapran i1 (12)
¢BB _ Z* . OJQBTBB

Zm - OéQBTBB—Fl‘

Examples for cumulative degree distributions of populastructures attained un-
der steady-state dynamics for different combinations efrélevant parameters are
shown in Figure 1. Indeed, this simple model of linking dymeasieads tasingle-
scalenetworks as defined by Amaral et al. (2000), with associateautative de-
gree distributions exhibiting fast decaying tails (Sargosl., 2006d). Such tails
which decay exponentially or faster than exponential, ilgadb what are known
as "broad-scale” and "single-scale” networks, respelytiage features which, to-
gether with a large variability in the average connectiyid@rogovtsev and Mendes,
2003; May, 2006), characterize most real-world social net®. The present model
only encompasses single scale networks. In order to desttvébbroad-scale net-
works often encountered in social systems, more refined Instieuld be devel-
oped.

The vertical arrows in Figure 1 indicate the average corvigcbof the associ-
ated graphs, showing that connectivity values similar te#hmeasured empirically
(Dorogovtsev and Mendes, 2003) are easily obtained witpithgent model. Note,
in particular, that the dependence of the stationary nétsvon the frequency of
individuals of a given type will automatically couple netkalynamics with the
frequency-dependent evolutionary dynamics we introdadke following.

3.3 Conditional strategies in populations with dynamicakiig

So far we have assumed that strategieand B are pure strategies in a single
game. What if they are strategies in a repeated game? Consdapracators k)
and unconditional defector$)). Each time a new link is established, a reciproca-
tor cooperates in the first round while an unconditional ckefienever cooperates.
Once a reciprocator faces defection by the opponent, heskaefecting until the
link is broken.

Interactions with twaR players last on average for timgg. Since it takes time;
to complete a round, they play on averagg: /7 rounds of Prisoner’s Dilemma
game within the lifetime of that link. Suppose that the payaétrix of the single-



round Prisoner’s Dilemma game is given by

C D

C (pcc pep
. 13
D <29Dc pDD) (13)

Both reciprocators gain the payoff 6fzr /) X pcc in time 7. Therefore, given
a link remains established, a payoff per unit time is given by

T 1
ﬂ.pco.izzﬂ. (14)
7o TRR 7o

A similar consideration yields that the payoff per unit tilmetween two uncondi-
tional defectors is given by

T 1
DD ooy —— = PPD. (15)
7o TDD To

When a link is established between a reciprocator and a deféiee link lasts for
an average timegp, So that these players on average ptay/m rounds of Pris-
oner’s Dilemma game. In the first round, the reciprocatompenates whereas the
unconditional defector defects, which yields the payofpef, to the reciprocator
andppc to the defector. From the second round on, both keep defeatid gain
ppp per round. The average number of rounds of mutual defedionj /) — 1.
Since the whole repeated game takes tixg, the average payoff of reciprocators
per unit time is, under the assumption of the link remainisiglelished, given by

1 _
(pC’D + <TM7 _ 1>pDD) _ bop n Pco pDD. (16)
To TRD To TRD

Under the same assumption, the average payoff of defectonsnit time is given
by

1 _
(pDC + (TRD - 1>pDD> — bop | Pbc — PpD 17)
To TRD To TRD

Taking into account the fraction of time when links are albses find that the
average payoffs per unit time of reciprocators and uncaoodit defectors are

Wr = (Nr — D)érr’ S + Npdro (pDD e pDD)
To To TRD (18)
W = Npdpr (pDD " Ppc pDD> +(Np — 1)¢DDPDD‘
T0 TRD To



Therefore for large populations we obtain

Wr N PrRPCC ®rD <pDD + 2 (pep — PDD)> TR
Wp '

0\ ¢pr (pDD + T]TTOD(Z?DC — pDD)) ®pDPDD

In the following, we will study the payoff matrix

R D
R ORRPCC ®RrD (pDD + %(pCD - pDD))
(20)
D\ ¢pr <pDD + T:TOD(]?DC — pDD)> ®pDPDD

as if associated with the evolutionary dynamics of a webledi population. Re-
member that'’s in (20) are determined by eq.(12). In addition to the estof the
2 x 2 payoff matrix, we have six parameters in totak, ap, Trr, Trp, Top andry.

4 Resaults

Let us investigate how the frequencies of strategieend D change under evolu-
tionary dynamics. The simultaneous evolution of strategy/structure will depend
on the time scales associated with strategy evolutionafid structural evolution
(7;;) (Pacheco et al., 2006a; Santos et al., 2006d; Pacheco 2006b). Whenever
T < T;; strategies evolve in an immutable network, which leads edthmework
investigated by Ohtsuki and Nowak (2007). Whene¥ers> 7,; graph dynamics
always attains a steady state before the next strategyeitadags place. This limit,
which has been shown to extend to a range of time scales whiahder than
expected (Santos et al., 2006d; Pacheco et al., 2006b) isavel one we shall
investigate here. In the following, we always assume tha& 7,; < 71 holds.
Figure 2 illustrates the magnitudes of the different timales that appear in the
present paper.

Let us study a standard Prisoner’s Dilemma game
C D ¢ D
C (pcc pcp C(lb—c —c
= 21
D<pDC pDD) D( b 0> (21)
(in the appendix we provide the general conditions for treeda whichppp # 0).

Suppose, for simplicity, that both reciprocators and uddwnal defectors share
the same propensity, = ar = ap, to form a new link. The matrix (20) simplifies

10



to

R D
TRR To
b _
TRR—FOfQ( ) TRD—i—OfQ( )
- . 22)
D — ) 0
TRD + a2

Multiplying (22) by (trp + a~2) /7 gives us

R D

R [se(b—c) —c
D( b 0 >’ (23)

B TRR 1—|—TRDCY2

where

(24)

e .
To 1+7’RROé2

5 Discussion

As seen in (23) (compare with eq.(1)), the parameterepresentshe effective
number of rounds of mutual cooperatiofhe larger the value of, the easier it is
for reciprocators to invade the entire population undeivadinking. For fixedq,

To @ndTgp, s IS an increasing function of; z, which conveys the message that the
more long-lived the links are between reciprocators, thieeb&r cooperation. On
the other hand, for fixed, 7y andTxrpg, s. IS also an increasing function ofp. In
other words, the longer the lifetime of links between reogators and defectors,
the better for cooperation. This result seems counteitivieu However, one may
understand it if one considers the type of interaction os link in detail. Once
a RD link is established, the reciprocator obtains the suckeagoff —c once.
After that, both individuals receive nothing. For the reoigator, it is better to keep
this link active than breaking it, since otherwise the linight be reestablished
again and the defector would exploit him once more. Thug,doiprocators a long
lifetime of links is advantageous. If it is AR link, the mutual cooperation leads
to a higher payoff. An activé:D link avoids multiple acts of exploitation by the
defector.

We now study hows, behaves withyv. When the propensity to form a new link,
is very small,s, becomes

Se A TR;R, (25)
7o
which is exactly the same as the average number of roundedlaytwo recipro-
cators. On the other hand, whens very large we obtain

Se As BD (26)

To

11



which is the average number of rounds played between a oeefor and an un-
conditional defector. The feasibility of cooperation eslion the propensity to form
new links. When this value is high, is determined by the lifetime of reciprocator-
defector links. Since it is often the case in reality that > 7zp, we find that the
smaller the propensity to establish new links the bettecémperation, given that
Trr Contributes more ta, thantzp. Indeed, when the propensity to form a new
link is high, defectors, who tend to lose a link more freqletitan reciprocators,
are able to reestablish the link quickly and exploit a remgator in a ‘new’ first
round, which is unfavourable for cooperation.

When we writes, in terms ofthe effective discounting factar,

1 1
Se = or we=1——, (27)
1— We Se

all the results from eq.(3a) to eq.(3e) hold for= w., provided the population size
N is large such that the underlying mean-field treatment useel femains valid.

For example, the reciprocating strategy is an ESS agaimstnaiitional defection

whenever b .
L. [ (28)
C W, Se — 1

holds.

In this work we took into account the time scale associated aisingle round of
a repeated game, as well as the lifetimes of different typdisls, together with
the possibility that existing links are severed and newdiake established. As a
result, and in the limit in which link dynamics is faster thewolutionary dynamics
of strategies, we have obtained a game-theoretical probtpnvalent to a conven-
tional evolutionary game in a well-mixed population, withrescaled payoff matrix.
This equivalence, however, is only mathematical, in theseehat the problem un-
der consideration does not allow us to regain a well-mixquugetion limit easily.
Clearly, the model introduced here captures some of thezstyfieatures of social
networks, in which individuals change their social tiesimd, and in which re-
warding links tend to last longer than unpleasant ones. ©wotier hand, one may
expect that random rewiring does not capture the detailecharesm(s) underly-
ing social network dynamics (Santos et al., 2006d). Whilgtiesent model allows
one to assess the role of dynamic linking in the evolutionoafperation under di-
rect reciprocity, more elaborate models should be consttlar order to describe
realistic social dynamics.

Our model shows that, in what concerns the evolution of cragjmn under direct
reciprocity, the path to cooperation is facilitated byaetinking dynamics. Coop-
eration is most viable when links last long enough and thegmsity to form new
links is not too high. Certainly this model recovers the mgssalready obtained
before that sparse static graphs favor cooperation (OhasukNowak, 2007). Yet,
dynamic linking enlarges the scope of feasibility of co@ien.

12



6 Conclusions

Whenever single round interactions of a Prisoner’s Dilemisuag are swift, and
the readjustment of different types of links occurs muchefathan the readjust-
ment of strategies, we find that the role of link rewiring dymes is to introduce
a rescaling of the payoff matrix associated with direct peaxity. The rescaling
obtained widens the scope of feasibility of cooperatioaady set forward by Oht-
suki and Nowak (2007). Without dynamical linking, recipatars mutually coop-
erate in consecutive rounds in a repeated game, whereasditiconal cooperators
take advantage of exploiting reciprocators only in the fiosind. In the traditional
framework of studying the iterated Prisoner’s Dilemma gaome usually assumes
that the number of repeated games that one plays is the saorggandividuals in
the population, and so is the number of the first round of rejgegames. When ac-
tive rewiring and time scales are explicitly taken into ddesation, however, this
homogeneous assumption is lost, and one must take intodswation the com-
petition between the lifetime of reciprocator-recipracdinks and reciprocator-
defector links and the the rates of link formation. As showrFig. 1, parameter
values which ensure the feasibility of cooperation undéivadinking dynamics
lead also to social graphs exhibiting realistic featuresiv linking opens a way
for cooperation by direct reciprocity to evolve on thesdistia networks.
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APPENDIX

For the general case in whighp # 0, eq.(23) now reads

R D
R Sepcc npop + (pcp — Pop) (A1)
D \ nppp + (ppc — PoD) TeDDD '

Tpp 1+ Trpa’
T0 1+TDD042’

wheres, has been defined befone, = andn = 1rp /0.

For the Prisoner’s Dilemma we know thatc > pcc > ppp > pcp. Hence, direct
reciprocity and active linking may effectively lead to a cdioation game whenever

sepec > Mppp + (Ppe — Pop) (A.2)
and
reppp > MPppp + (Pep — Pob)- (A.3)

18



Figure captions

Figure 1.

Cumulative degree distributions (defineda8:) = >°;-, N;/N, with N; the num-
ber of nodes with degreg for networks generated with the present model, for pop-
ulations of sizeV = 10% and two different types of individuals. The fast decaying
tails correlate well with the observed tails of real sociatworks (Amaral et al.,
2000; Dorogovtsev and Mendes, 2003; May, 2006). The premedtl, however,
leads to single scale networks (Amaral et al., 2000), broatksretworks being out
of its scope (for details of the degree distributions, seelieco et al., 2006a). On
the other hand, the dependence of the final network on thadrexy of each type of
individuals leads to a natural coupling between networkagiyics and frequency-
dependent strategy evolution. The vertical arrows inditla¢ average connectivity
of each graph, which is far greater than those typically @ased with static graphs
where cooperation under direct reciprocity thrives (Okitamd Nowak, 2007). Pa-
rameters usedV,/N = 0.5, oy = ap = 1, faa = Bap = PBee = 50 (red solid
CUTVG),NA/N = 0.35, ay = 1.1, agp = 0.75, 5AA = ﬁAB = ﬁBB = 50 (blue
dashed curve) anti 4 /N = 0.5, aq = ap = 0.2, Baa = Bap = Ppp = 10 (black
dash-dot curve).

Figure 2.

Characteristic time scales associated with direct recityramder active linking
dynamics. We assume that a typical interaction betweenndigiduals has an av-
erage durationy. For direct reciprocity to be effective, the charactecishiration
of links between reciprocators ), between defectors ) and between recip-
rocators and defectors{5) should be larger tham,. Nonetheless, each of this
type of links may have different characteristic lifetimas, illustrated in the left
panel. Thus, the average number of rounds between pairgliofdoals with dif-
ferent strategies may be different, as well as the averagdeuof links between
individuals of different types, as illustrated in the riglainel. Finally, our analytical
results rely on the assumption that the characteristic soade of active linking -
of the order of any of 7gr, 7Trp, 7pp } - Must be much smaller than that associated
with strategy evolution®), as illustrated in the left panel.
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