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Abstract

Direct reciprocity relies on repeated encounters between the same two individuals. Here
we examine the evolution of cooperation under direct reciprocity in dynamically structured
populations. Individuals occupy the vertices of a graph, undergoing repeated interactions
with their partners via the edges of the graph. Unlike the traditional approach to evolution-
ary game theory, where individuals meet at random and have no controlover the frequency
or duration of interactions, we consider a model in which individuals differin the rate
at which they seek new interactions. Moreover, once a link between two individuals has
formed, the productivity of this link is evaluated. Links can be broken off at different rates.
Whenever the active dynamics of links is sufficiently fast, population structure leads to a
simple transformation of the payoff matrix, effectively changing the game under considera-
tion, and hence paving the way for reciprocators to dominate defectors. We derive analytical
conditions for evolutionary stability.
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1 Introduction

Game theoretic ideas were first introduced to biology by Hamilton (1964) and
Trivers (1971), but the field of evolutionary game theory wasfounded by Maynard
Smith and Price (1973) and Maynard Smith (1982). The replicator equation (Taylor
and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980) constitutes the mathemat-
ical foundation of evolutionary game dynamics. It is a system of ordinary differ-
ential equations describing how the relative abundances (frequencies) of strategies
change over time as a consequence of frequency dependent selection. The payoff
from the game is interpreted as biological fitness. Individuals reproduce propor-
tional to their fitness. Reproduction can be genetic or cultural. The expected payoff
of an individual is a linear function of the frequencies of all strategies; the coeffi-
cients of this function are the entries of the payoff matrix.For detailed reviews of
the replicator equation and other approaches to evolutionary game dynamics, see
Fudenberg and Tirole (1991), Weibull (1995), Samuelson (1997), Hofbauer and
Sigmund (1998, 2003), Gintis (2000), Bowles (2003), Cressman(2003), Nowak
and Sigmund (2004) and Nowak (2006a).

The act of cooperation typically involves a costc to the provider and a benefitb
to the recipient. In the absence of a specific mechanism for the evolution of co-
operation, natural selection favors defectors. There are at least five mechanisms
that can lead to the evolution of cooperation: kin selection, group selection, direct
reciprocity, indirect reciprocity and network reciprocity (=graph selection).

In this paper, we study the interaction between direct and network reciprocity; how-
ever, unlike conventional network reciprocity, as defined in Nowak (2006b), here
the network is adaptive, as discussed below. The study of theevolution of coop-
eration under direct reciprocity on dynamical networks deserves special attention,
given the recent results which show that co-evolution of population structure with
individual strategy provide efficient mechanism for the evolution of cooperation
under simple one-shot games (Pacheco et al., 2006a,b; Santos et al., 2006d).

Direct reciprocity is based on the idea of repeated encounters between two indi-
viduals (Trivers, 1971) according to the principle, ”I scratch your back and you
scratch mine”. The game theoretic framework of direct reciprocity is therepeated
Prisoner’s Dilemma (PD), which has been the subject of numerous studies across
various disciplines (Rapoport and Chammah, 1965; Axelrod andHamilton, 1981;
Axelrod, 1984; Selten and Hammerstein, 1984; Milinski, 1987; May, 1987; Ax-
elrod and Dion, 1988; Fudenberg and Maskin, 1990; Imhof et al., 2005). A large
number of strategies for playing the repeated PD have been analyzed. The most
prominent ones are tit-for-tat (Axelrod, 1984), generous-tit-for-tat (Nowak and Sig-
mund, 1992), contrite-tit-for-tat (Sugden, 1986; Boerlijst, 1997) or win-stay, lose-
shift (Nowak and Sigmund, 1993).
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In general, it is a very difficult task to find successful strategies for playing the
repeated PD (Axelrod, 1984; Kraines and Kraines, 1988; Fudenberg and Maskin,
1990; Lindgren, 1991). But if what we want is to investigate ifcooperation has any
chance to evolve by direct reciprocity at all, then a very simple game can be studied.
We only need to consider two strategies: Unconditional defectors (D), defect all the
time; Reciprocators (R) start cooperating and then continue to cooperate as long as
the opponent cooperates, but defect if the opponent defects. Such individuals can
be thought of as playing a strategy like tit-for-tat or Grim.Tit-for-tat cooperates on
the first move and then does whatever the opponent has done on the previous move.
Grim cooperates until the opponent defects once and then permanently switches
to defection. Despite the difference between these two strategies, when playing
against an unconditional defector, tit-for-tat and grim lead to the same sequence
of cooperation in the first round and unconditional defection from then on. Only
if errors or more complex strategy sets are considered, differences between the
strategies arise. Hence, a Reciprocator will only cooperateonce against a defector
and will behave as an unconditional cooperator against another Reciprocator.

Let us denote byw the probability of playing another round. The average number
of rounds between the same two players is given by1/(1 − w). The payoff matrix
for reciprocators (R) versus unconditional defectors (D) is given by







R D

R
b − c

1 − w
−c

D b 0





 (1)

that is, reciprocators pay the costc once, and unconditional defectors receive the
benefitb only once.

One-shot and repeated games on spatial lattices have been studied by many authors
(Nowak and May, 1992, 1993; Wilson et al., 1992; Nowak et al.,1994; Lindgren
and Nordahl, 1994; Killingback and Doebeli, 1996; Nakamaruet al., 1997, 1998;
van Baalen and Rand, 1998; Szabó and T̋oke, 1998; Hauert et al., 2002; Szabó
and Hauert, 2002; Brandt et al. , 2003; Hauert and Doebeli, 2004; Hauert and
Szab́o, 2005; Szab́o et al., 2005; Nowak, 2006a; Szabó and F́ath, 2007). Evolu-
tionary graph theory is an extension of this approach to general population struc-
ture and networks (Lieberman et al., 2005; Pacheco and Santos, 2005; Santos and
Pacheco, 2005; Santos et al., 2005, 2006a,b; Santos and Pacheco, 2006; Ohtsuki
and Nowak, 2006a,b, 2007; Ohtsuki et al., 2006, 2007a,b; Pacheco et al., 2006a,b).
It is usually assumed that the population structure is constant in the time scale of the
evolutionary updating. Recently, Ohtsuki and Nowak (2007) have investigated the
evolutionary feasibility of cooperation under direct reciprocity for static networks.
The combination of direct reciprocity with (static) network reciprocity was shown
to open the way for reciprocators to invade (even when rare) unconditional defec-
tors, which is never possible in a well-mixed population. The effect of network
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reciprocity is strongest if people have few neighbors (or ifmost interactions occur
only with a subset of ‘very close friends’). In many real-world social and biological
networks (Amaral et al., 2000; Dorogovtsev and Mendes, 2003; May, 2006; Santos
et al., 2006d), however, the average connectivity of individuals is not small.

In addition to static networks, one-shot-games on dynamical graphs have also been
investigated (Bala and Goyal, 2000; Skyrms and Pemantle, 2000; Zimmermann et
al., 2004; Egúıluz et al., 2005; Santos et al., 2006d). It has been recentlyshown
(Pacheco et al., 2006a,b; Santos et al., 2006d) that the limitation to small connec-
tivity may be overcome if one evolvessimultaneouslyindividual strategy and pop-
ulation structure. Here we investigate the impact of co-evolution of strategy and
structure in the evolution of cooperation under direct reciprocity.

In Section 2 we introduce relevant concepts of evolutionarygame dynamics in finite
and infinite populations, as well as results related to direct reciprocity in well-mixed
populations. In Section 3 we introduce the model of active linking dynamics, in
which individuals seek new partners and break existing tiesat different rates. In
Sections 4 and 5 we discuss our results for direct reciprocity on dynamical graphs.
In Section 6 we offer conclusions.

2 Evolutionary stability and risk-dominance in well-mixed populations

Consider a game between two strategies,A andB, given by the payoff matrix

(

A B

A pAA pAB

B pBA pBB

)

. (2)

An infinitely large population ofA players cannot be invaded byB players if
pAA > pBA, that is,A is both a strict Nash equilibrium and an Evolutionarily Stable
Strategy (ESS). In aninfinitewell-mixed population, both strategies are ESS when-
everpAA > pBA andpAB < pBB. The replicator equation (Taylor and Jonker, 1978;
Hofbauer et al., 1979; Weibull, 1995; Hofbauer and Sigmund,1998) admits an un-
stable mixed equilibrium, located atx∗ = (pBB −pAB)/(pAA−pAB −pBA +pBB),
wherex∗ is the equilibrium frequency of A players in the population.StrategyA
is Risk-Dominant (RD) if it has the bigger basin of attraction,that is, whenever
pAA + pAB > pBA + pBB.

In finite, well-mixed populations, a crucial quantity is the fixationprobability of
a strategy, that is, the probability that the lineage arising from a single mutant of
that strategy will take over the entire population (Nowak etal., 2004; Taylor et al.,
2004). IfpAA + 2pAB > pBA + 2pBB then the fixation probability of strategyA is
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greater than the fixation probability of a neutral mutant (1/N ). This means selection
favors the replacement ofB by A, and therefore a singleA-player in a population
of B-players is an advantageous mutant. The condition can be expressed as a1/3-
rule: if the fitness of the invadingA at a frequency of1/3 is greater than the fitness
of the residentB then the fixation probability ofA is greater than1/N (Nowak et
al., 2004; Imhof and Nowak, 2006; Ohtsuki et al., 2007c). This condition holds in
the limit of weak selection where the payoff from the game is small compared to a
constant background fitness. Furthermore, ifA is ‘risk dominant’ (RD) compared
to B, then the fixation probability ofA is greater than the fixation probability of
B for weak selection and large population size (Nowak et al., 2004; Imhof and
Nowak, 2006).

Given the payoff matrix associated with direct reciprocity, eq. (1), we can immedi-
ately write down the following conditions (Ohtsuki and Nowak, 2007):

The reciprocator strategy is an ESS if

b

c
>

1

w
. (3a)

In this case, a defector in an infinitely large population of cooperators has a lower
fitness. The unstable fixed point is located at

x∗ =
c

b − c

1 − w

w
. (3b)

In a finite population, however, it is still possible that thefixation probability of
a single defector,ρD, is greater than that of a neutral mutant (1/N ). Hence, if we
want defectors to be disadvantageous, we must require thatρD < 1/N . For weak
selection and large population size the condition reads (Ohtsuki and Nowak, 2007)

b

c
>

3 − w

2w
. (3c)

In this case, the basin of attraction of reciprocators is greater than1/3. Reciproca-
tors become RD when

b

c
>

2 − w

w
, (3d)

that is,ρR > ρD for large populations and weak selection. Finally, reciprocators
become advantageous ifρR > 1/N ; for large populations and weak selection, this
is equivalent to (Ohtsuki and Nowak, 2007)

b

c
>

3 − 2w

w
. (3e)
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3 Basic model and transformation of payoff matrices

Let us study a game between two strategies,A andB, in a population of fixed size,
N . There areNA players who use strategyA, andNB players who use strategyB.

3.1 Unconditional strategies in finite, well-mixed populations

First consider the case without dynamical linking or conditional strategies. Strate-
giesA andB are unconditional and pure strategies of the2 × 2 game with payoff
matrix

(

A B

A pAA pAB

B pBA pBB

)

. (4)

In each round of the game,A players choose actionA, andB players choose action
B. Suppose that players keep playing the game with all other players simultane-
ously. EachA-player interacts withNA − 1 manyA-opponents andNB manyB-
opponents. EachB-player interacts withNA manyA-opponents andNB − 1 many
B-opponents. When it takes an amount of timeτ0 for players to complete a round
of game, the payoffs per unit time are calculated as

WA = (NA − 1)
pAA

τ0

+ NB

pAB

τ0

,

WB = NA

pBA

τ0

+ (NB − 1)
pBB

τ0

.
(5)

If NA andNB are large, we can neglect−1 in eq.(5) and we obtain







WA

WB





 =
N

τ0







pAA pAB

pBA pBB













xA

xB





 . (6)

HerexA andxB represent relative abundances of strategies,A andB, namely,xA =
NA/N , xB = NB/N , such thatxA + xB = 1.

3.2 Unconditional strategies in populations with dynamicallinking

Next we incorporate the effect of dynamical linking into thepayoff matrix. Con-
sider two players in the population. These players are able to play games only when
there is a link between them. It is possible for a player to have multiple links and to
play games with different partners at the same time. Letφij represent the average
fraction of time a link is present between ani(= A,B)-player and aj(= A,B)-
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player. In this case, the payoffs per unit time become

WA = (NA − 1)φAA

pAA

τ0

+ NBφAB

pAB

τ0

,

WB = NAφBA

pBA

τ0

+ NBφBB

pBB

τ0

.
(7)

We have






WA

WB





 =
N

τ0







φAApAA φABpAB

φBApBA φBBpBB













xA

xB





 . (8)

Equation (8) suggests that the linking dynamics introducesa simple transformation
of the payoff matrix. We can study standard evolutionary game dynamics using the
modified payoff matrix (Pacheco et al., 2006a,b).

The fractions of time that different types of links are active, φ, are calculated as
follows. Links are formed at certain rates and have specific life-times. Denote by
X(t) the number ofAA links at timet. Similarly,Y (t) andZ(t) denote the number
of AB andBB links at timet. The maximum possible number ofAA, AB andBB
links is respectively given by

Xm = NA(NA − 1)/2

Ym = NANB

Zm = NB(NB − 1)/2

(9)

SupposeA andB players have a propensity to form new links denoted byαA and
αB, such thatAA links are formed at a rateα2

A, AB links are formed at a rateαAαB

andBB links are formed at a rateα2

B. Also suppose that the average life-times of
links are given byτAA, τAB andτBB (≫ τ0).

Linking dynamics can then be described by a system of three ordinary differential
equations for the number of links (Pacheco et al., 2006a,b):

Ẋ = α2

A(Xm − X) −
1

τAA

X,

Ẏ = αAαB(Ym − Y ) −
1

τAB

Y,

Ż = α2

B(Zm − Z) −
1

τBB

Z.

(10)

In the steady state, the number of links of the three different types is given by

X∗ =
α2

AτAA

α2

AτAA + 1
Xm,

Y ∗ =
αAαBτAB

αAαBτAB + 1
Ym,

Z∗ =
α2

BτBB

α2

BτBB + 1
Zm.

(11)
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Hence we may write

φAA =
X∗

Xm

=
α2

AτAA

α2

AτAA + 1
,

φAB = φBA =
Y ∗

Ym

=
αAαBτAB

αAαBτAB + 1
,

φBB =
Z∗

Zm

=
α2

BτBB

α2

BτBB + 1
.

(12)

Examples for cumulative degree distributions of population structures attained un-
der steady-state dynamics for different combinations of the relevant parameters are
shown in Figure 1. Indeed, this simple model of linking dynamics leads tosingle-
scalenetworks as defined by Amaral et al. (2000), with associated cumulative de-
gree distributions exhibiting fast decaying tails (Santoset al., 2006d). Such tails
which decay exponentially or faster than exponential, leading to what are known
as ”broad-scale” and ”single-scale” networks, respectively, are features which, to-
gether with a large variability in the average connectivity(Dorogovtsev and Mendes,
2003; May, 2006), characterize most real-world social networks. The present model
only encompasses single scale networks. In order to describe the broad-scale net-
works often encountered in social systems, more refined models should be devel-
oped.

The vertical arrows in Figure 1 indicate the average connectivity of the associ-
ated graphs, showing that connectivity values similar to those measured empirically
(Dorogovtsev and Mendes, 2003) are easily obtained with thepresent model. Note,
in particular, that the dependence of the stationary networks on the frequency of
individuals of a given type will automatically couple network dynamics with the
frequency-dependent evolutionary dynamics we introduce in the following.

3.3 Conditional strategies in populations with dynamical linking

So far we have assumed that strategiesA and B are pure strategies in a single
game. What if they are strategies in a repeated game? Consider reciprocators (R)
and unconditional defectors (D). Each time a new link is established, a reciproca-
tor cooperates in the first round while an unconditional defector never cooperates.
Once a reciprocator faces defection by the opponent, he keeps defecting until the
link is broken.

Interactions with twoR players last on average for timeτRR. Since it takes timeτ0

to complete a round, they play on averageτRR/τ0 rounds of Prisoner’s Dilemma
game within the lifetime of that link. Suppose that the payoff matrix of the single-
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round Prisoner’s Dilemma game is given by

(

C D

C pCC pCD

D pDC pDD

)

. (13)

Both reciprocators gain the payoff of(τRR/τ0)×pCC in timeτRR. Therefore, given
a link remains established, a payoff per unit time is given by

τRR

τ0

· pCC ·
1

τRR

=
pCC

τ0

. (14)

A similar consideration yields that the payoff per unit timebetween two uncondi-
tional defectors is given by

τDD

τ0

· pDD ·
1

τDD

=
pDD

τ0

. (15)

When a link is established between a reciprocator and a defector, the link lasts for
an average timeτRD, so that these players on average playτRD/τ0 rounds of Pris-
oner’s Dilemma game. In the first round, the reciprocator cooperates whereas the
unconditional defector defects, which yields the payoff ofpCD to the reciprocator
andpDC to the defector. From the second round on, both keep defecting and gain
pDD per round. The average number of rounds of mutual defection is (τRD/τ0)−1.
Since the whole repeated game takes timeτRD, the average payoff of reciprocators
per unit time is, under the assumption of the link remaining established, given by



pCD +
(

τRD

τ0

− 1
)

pDD





1

τRD

=
pDD

τ0

+
pCD − pDD

τRD

. (16)

Under the same assumption, the average payoff of defectors per unit time is given
by



pDC +
(

τRD

τ0

− 1
)

pDD





1

τRD

=
pDD

τ0

+
pDC − pDD

τRD

. (17)

Taking into account the fraction of time when links are absent, we find that the
average payoffs per unit time of reciprocators and unconditional defectors are

WR = (NR − 1)φRR

pCC

τ0

+ NDφRD

(

pDD

τ0

+
pCD − pDD

τRD

)

WD = NRφDR

(

pDD

τ0

+
pDC − pDD

τRD

)

+ (ND − 1)φDD

pDD

τ0

.
(18)
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Therefore for large populations we obtain







WR

WD





 =
N

τ0









φRRpCC φRD

(

pDD + τ0
τRD

(pCD − pDD)
)

φDR

(

pDD + τ0
τRD

(pDC − pDD)
)

φDDpDD















xR

xD





 .

(19)

In the following, we will study the payoff matrix









R D

R φRRpCC φRD

(

pDD + τ0
τRD

(pCD − pDD)
)

D φDR

(

pDD + τ0
τRD

(pDC − pDD)
)

φDDpDD









(20)

as if associated with the evolutionary dynamics of a well-mixed population. Re-
member thatφ’s in (20) are determined by eq.(12). In addition to the entries of the
2× 2 payoff matrix, we have six parameters in total,αR, αD, τRR, τRD, τDD andτ0.

4 Results

Let us investigate how the frequencies of strategiesR andD change under evolu-
tionary dynamics. The simultaneous evolution of strategy and structure will depend
on the time scales associated with strategy evolution (T ) and structural evolution
(τij) (Pacheco et al., 2006a; Santos et al., 2006d; Pacheco et al., 2006b). Whenever
T ≪ τij strategies evolve in an immutable network, which leads to the framework
investigated by Ohtsuki and Nowak (2007). WheneverT ≫ τij graph dynamics
always attains a steady state before the next strategy update takes place. This limit,
which has been shown to extend to a range of time scales which is wider than
expected (Santos et al., 2006d; Pacheco et al., 2006b), is the novel one we shall
investigate here. In the following, we always assume thatτ0 ≪ τij ≪ T holds.
Figure 2 illustrates the magnitudes of the different time scales that appear in the
present paper.

Let us study a standard Prisoner’s Dilemma game

(

C D

C pCC pCD

D pDC pDD

)

=

(

C D

C b − c −c
D b 0

)

(21)

(in the appendix we provide the general conditions for the case in whichpDD 6= 0).
Suppose, for simplicity, that both reciprocators and unconditional defectors share
the same propensity,α ≡ αR = αD, to form a new link. The matrix (20) simplifies
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to









R D

R
τRR

τRR + α−2
(b − c)

τ0

τRD + α−2
(−c)

D
τ0

τRD + α−2
b 0









. (22)

Multiplying (22) by (τRD + α−2)/τ0 gives us

(

R D

R se(b − c) −c
D b 0

)

, (23)

where

se =
τRR

τ0

·
1 + τRDα2

1 + τRRα2
. (24)

5 Discussion

As seen in (23) (compare with eq.(1)), the parameterse representsthe effective
number of rounds of mutual cooperation. The larger the value ofse the easier it is
for reciprocators to invade the entire population under active linking. For fixedα,
τ0 andτRD, se is an increasing function ofτRR, which conveys the message that the
more long-lived the links are between reciprocators, the better for cooperation. On
the other hand, for fixedα, τ0 andτRR, se is also an increasing function ofτRD. In
other words, the longer the lifetime of links between reciprocators and defectors,
the better for cooperation. This result seems counter-intuitive. However, one may
understand it if one considers the type of interaction on this link in detail. Once
a RD link is established, the reciprocator obtains the sucker’spayoff −c once.
After that, both individuals receive nothing. For the reciprocator, it is better to keep
this link active than breaking it, since otherwise the link might be reestablished
again and the defector would exploit him once more. Thus, forreciprocators a long
lifetime of links is advantageous. If it is aRR link, the mutual cooperation leads
to a higher payoff. An activeRD link avoids multiple acts of exploitation by the
defector.

We now study howse behaves withα. When the propensity to form a new link,α,
is very small,se becomes

se ≈
τRR

τ0

, (25)

which is exactly the same as the average number of rounds played by two recipro-
cators. On the other hand, whenα is very large we obtain

se ≈
τRD

τ0

, (26)
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which is the average number of rounds played between a reciprocator and an un-
conditional defector. The feasibility of cooperation relies on the propensity to form
new links. When this value is high,se is determined by the lifetime of reciprocator-
defector links. Since it is often the case in reality thatτRR > τRD, we find that the
smaller the propensity to establish new links the better forcooperation, given that
τRR contributes more tose thanτRD. Indeed, when the propensity to form a new
link is high, defectors, who tend to lose a link more frequently than reciprocators,
are able to reestablish the link quickly and exploit a reciprocator in a ‘new’ first
round, which is unfavourable for cooperation.

When we writese in terms ofthe effective discounting factor, we

se =
1

1 − we

or we = 1 −
1

se

, (27)

all the results from eq.(3a) to eq.(3e) hold forw = we, provided the population size
N is large such that the underlying mean-field treatment used here remains valid.

For example, the reciprocating strategy is an ESS against unconditional defection
whenever

b

c
>

1

we

=
se

se − 1
(28)

holds.

In this work we took into account the time scale associated with a single round of
a repeated game, as well as the lifetimes of different types of links, together with
the possibility that existing links are severed and new links are established. As a
result, and in the limit in which link dynamics is faster thanevolutionary dynamics
of strategies, we have obtained a game-theoretical problemequivalent to a conven-
tional evolutionary game in a well-mixed population, with arescaled payoff matrix.
This equivalence, however, is only mathematical, in the sense that the problem un-
der consideration does not allow us to regain a well-mixed population limit easily.
Clearly, the model introduced here captures some of the stylized features of social
networks, in which individuals change their social ties in time, and in which re-
warding links tend to last longer than unpleasant ones. On the other hand, one may
expect that random rewiring does not capture the detailed mechanism(s) underly-
ing social network dynamics (Santos et al., 2006d). While thepresent model allows
one to assess the role of dynamic linking in the evolution of cooperation under di-
rect reciprocity, more elaborate models should be considered in order to describe
realistic social dynamics.

Our model shows that, in what concerns the evolution of cooperation under direct
reciprocity, the path to cooperation is facilitated by active linking dynamics. Coop-
eration is most viable when links last long enough and the propensity to form new
links is not too high. Certainly this model recovers the message already obtained
before that sparse static graphs favor cooperation (Ohtsuki and Nowak, 2007). Yet,
dynamic linking enlarges the scope of feasibility of cooperation.

12



6 Conclusions

Whenever single round interactions of a Prisoner’s Dilemma game are swift, and
the readjustment of different types of links occurs much faster than the readjust-
ment of strategies, we find that the role of link rewiring dynamics is to introduce
a rescaling of the payoff matrix associated with direct reciprocity. The rescaling
obtained widens the scope of feasibility of cooperation already set forward by Oht-
suki and Nowak (2007). Without dynamical linking, reciprocators mutually coop-
erate in consecutive rounds in a repeated game, whereas unconditional cooperators
take advantage of exploiting reciprocators only in the firstround. In the traditional
framework of studying the iterated Prisoner’s Dilemma game, one usually assumes
that the number of repeated games that one plays is the same among individuals in
the population, and so is the number of the first round of repeated games. When ac-
tive rewiring and time scales are explicitly taken into consideration, however, this
homogeneous assumption is lost, and one must take into consideration the com-
petition between the lifetime of reciprocator-reciprocator links and reciprocator-
defector links and the the rates of link formation. As shown in Fig. 1, parameter
values which ensure the feasibility of cooperation under active linking dynamics
lead also to social graphs exhibiting realistic features. Active linking opens a way
for cooperation by direct reciprocity to evolve on these realistic networks.
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APPENDIX

For the general case in whichpDD 6= 0, eq.(23) now reads

(

R D

R sepCC ηpDD + (pCD − pDD)
D ηpDD + (pDC − pDD) repDD

)

(A.1)

wherese has been defined before,re =
τDD

τ0

·
1 + τRDα2

1 + τDDα2
, andη = τRD/τ0.

For the Prisoner’s Dilemma we know thatpDC > pCC > pDD > pCD. Hence, direct
reciprocity and active linking may effectively lead to a coordination game whenever

sepCC > ηpDD + (pDC − pDD) (A.2)

and
repDD > ηpDD + (pCD − pDD). (A.3)
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Figure captions

Figure 1.
Cumulative degree distributions (defined asD(k) =

∑

j≥k Nj/N , with Nj the num-
ber of nodes with degreej) for networks generated with the present model, for pop-
ulations of sizeN = 103 and two different types of individuals. The fast decaying
tails correlate well with the observed tails of real social networks (Amaral et al.,
2000; Dorogovtsev and Mendes, 2003; May, 2006). The presentmodel, however,
leads to single scale networks (Amaral et al., 2000), broad scale networks being out
of its scope (for details of the degree distributions, see (Pacheco et al., 2006a). On
the other hand, the dependence of the final network on the frequency of each type of
individuals leads to a natural coupling between network dynamics and frequency-
dependent strategy evolution. The vertical arrows indicate the average connectivity
of each graph, which is far greater than those typically associated with static graphs
where cooperation under direct reciprocity thrives (Ohtsuki and Nowak, 2007). Pa-
rameters used:NA/N = 0.5, αA = αB = 1, βAA = βAB = βBB = 50 (red solid
curve),NA/N = 0.35, αA = 1.1, αB = 0.75, βAA = βAB = βBB = 50 (blue
dashed curve) andNA/N = 0.5, αA = αB = 0.2, βAA = βAB = βBB = 10 (black
dash-dot curve).

Figure 2.
Characteristic time scales associated with direct reciprocity under active linking
dynamics. We assume that a typical interaction between two individuals has an av-
erage durationτ0. For direct reciprocity to be effective, the characteristic duration
of links between reciprocators (τRR), between defectors (τDD) and between recip-
rocators and defectors (τRD) should be larger thanτ0. Nonetheless, each of this
type of links may have different characteristic lifetimes,as illustrated in the left
panel. Thus, the average number of rounds between pairs of individuals with dif-
ferent strategies may be different, as well as the average number of links between
individuals of different types, as illustrated in the rightpanel. Finally, our analytical
results rely on the assumption that the characteristic timescale of active linking -
of the order of any of{τRR, τRD, τDD} - must be much smaller than that associated
with strategy evolution (T ), as illustrated in the left panel.
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