584 research outputs found

    Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles

    Full text link
    We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color. We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This can be interpreted as coloring point sets in R^2 with k colors such that any bottomless rectangle containing at least 3k-2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set. For this problem, we also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k)p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the European Workshop on Computational Geometry, held in Assisi (Italy) on March 19-21, 201

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Drawing Planar Graphs with a Prescribed Inner Face

    Full text link
    Given a plane graph GG (i.e., a planar graph with a fixed planar embedding) and a simple cycle CC in GG whose vertices are mapped to a convex polygon, we consider the question whether this drawing can be extended to a planar straight-line drawing of GG. We characterize when this is possible in terms of simple necessary conditions, which we prove to be sufficient. This also leads to a linear-time testing algorithm. If a drawing extension exists, it can be computed in the same running time

    study protocol for two randomized pragmatic trials

    Get PDF
    Background Chronic low back pain (LBP) and neck pain (NP) are highly prevalent conditions resulting in high economic costs. Treatment guidelines recommend relaxation techniques, such as progressive muscle relaxation, as adjuvant therapies. Self-care interventions could have the potential to reduce costs in the health care system, but their effectiveness, especially in a usual care setting, is unclear. The aim of these two pragmatic randomized studies is to evaluate whether an additional app-delivered relaxation is more effective in the reduction of chronic LBP or NP than usual care alone. Methods/design Each pragmatic randomized two-armed study aims to include a total of 220 patients aged 18 to 65 years with chronic (>12 weeks) LBP or NP and an average pain intensity of ≄ 4 on a numeric rating scale (NRS) in the 7 days before recruitment. The participants will be randomized into an intervention and a usual care group. The intervention group will be instructed to practice one of these 3 relaxation techniques on at least 5 days/week for 15 minutes/day over a period of 6 months starting on the day of randomization: autogenic training, mindfulness meditation, or guided imagery. Instructions and exercises will be provided using a smartphone app, baseline information will be collected using paper and pencil. Follow-up information (daily, weekly, and after 3 and 6 months) will be collected using electronic diaries and questionnaires included in the app. The primary outcome measure will be the mean LBP or NP intensity during the first 3 months of intervention based on daily pain intensity measurements on a NRS (0 = no pain, 10 = worst possible pain). The secondary outcome parameters will include the mean pain intensity during the first 6 months after randomization based on daily measurements, the mean pain intensity measured weekly as the average pain intensity of the previous 7 days over 3 and 6 months, pain acceptance, ‘LBP- and NP-related’ stress, sick leave days, pain medication intake, adherence, suspected adverse reaction, and serious adverse events. Discussion The designed studies reflect a usual self- care setting and will provide evidence on a pragmatic self-care intervention that is easy to combine with care provided by medical professionals

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,
,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,
,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n−3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Five Lessons Learned From Randomized Controlled Trials on Mobile Health Interventions: Consensus Procedure on Practical Recommendations for Sustainable Research

    Get PDF
    Background: Clinical research on mobile health (mHealth) interventions is too slow in comparison to the rapid speed of technological advances, thereby impeding sustainable research and evidence-based implementation of mHealth interventions. Objective: We aimed to establish practical lessons from the experience of our working group, which might accelerate the development of future mHealth interventions and their evaluation by randomized controlled trials (RCTs). Methods: This paper is based on group and expert discussions, and focuses on the researchers’ perspectives after four RCTson mHealth interventions for chronic pain. Results: The following five lessons are presented, which are based on practical application, increase of speed, and sustainability: (1) explore stakeholder opinions, (2) develop the mHealth app and trial simultaneously, (3) minimize complexity, (4) manage necessary resources, and (5) apply behavior change techniques. Conclusions: The five lessons developed may lead toward an agile research environment. Agility might be the key factor in the development and research process of a potentially sustainable and evidence-based mHealth intervention

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    ÎČ\beta-Stars or On Extending a Drawing of a Connected Subgraph

    Full text link
    We consider the problem of extending the drawing of a subgraph of a given plane graph to a drawing of the entire graph using straight-line and polyline edges. We define the notion of star complexity of a polygon and show that a drawing ΓH\Gamma_H of an induced connected subgraph HH can be extended with at most min⁥{h/2,ÎČ+log⁥2(h)+1}\min\{ h/2, \beta + \log_2(h) + 1\} bends per edge, where ÎČ\beta is the largest star complexity of a face of ΓH\Gamma_H and hh is the size of the largest face of HH. This result significantly improves the previously known upper bound of 72∣V(H)∣72|V(H)| [5] for the case where HH is connected. We also show that our bound is worst case optimal up to a small additive constant. Additionally, we provide an indication of complexity of the problem of testing whether a star-shaped inner face can be extended to a straight-line drawing of the graph; this is in contrast to the fact that the same problem is solvable in linear time for the case of star-shaped outer face [9] and convex inner face [13].Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018
    • 

    corecore