We consider a coloring problem on dynamic, one-dimensional point sets: points
appearing and disappearing on a line at given times. We wish to color them with
k colors so that at any time, any sequence of p(k) consecutive points, for some
function p, contains at least one point of each color.
We prove that no such function p(k) exists in general. However, in the
restricted case in which points appear gradually, but never disappear, we give
a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This
can be interpreted as coloring point sets in R^2 with k colors such that any
bottomless rectangle containing at least 3k-2 points contains at least one
point of each color. Here a bottomless rectangle is an axis-aligned rectangle
whose bottom edge is below the lowest point of the set. For this problem, we
also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists
a point set, every k-coloring of which is such that there exists a bottomless
rectangle containing ck points and missing at least one of the k colors.
Chen et al. (2009) proved that no such function p(k) exists in the case of
general axis-aligned rectangles. Our result also complements recent results
from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the
European Workshop on Computational Geometry, held in Assisi (Italy) on March
19-21, 201