686 research outputs found
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors
The atmospheric neutrino background for proton decay to positron and neutral
pion in ring imaging water Cherenkov detectors is studied with an artificial
accelerator neutrino beam for the first time. In total, about 314,000 neutrino
events corresponding to about 10 megaton-years of atmospheric neutrino
interactions were collected by a 1,000 ton water Cherenkov detector (KT). The
KT charged-current single neutral pion production data are well reproduced by
simulation programs of neutrino and secondary hadronic interactions used in the
Super-Kamiokande (SK) proton decay search. The obtained proton to positron and
neutral pion background rate by the KT data for SK from the atmospheric
neutrinos whose energies are below 3 GeV is about two per megaton-year. This
result is also relevant to possible future, megaton-scale water Cherenkov
detectors.Comment: 13 pages, 16 figure
Indications of Neutrino Oscillation in a 250 km Long-baseline Experiment
The K2K experiment observes indications of neutrino oscillation: a reduction
of flux together with a distortion of the energy spectrum. Fifty-six
beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the
neutrino production point, with an expectation of .
Twenty-nine one ring -like events are used to reconstruct the neutrino
energy spectrum, which is better matched to the expected spectrum with neutrino
oscillation than without. The probability that the observed flux at SK is
explained by statistical fluctuation without neutrino oscillation is less than
1%.Comment: 5 pages, 3 figures embedded, LaTeX with RevTeX style, accepted for
publication in PRL on December 13, 200
The K2K SciBar Detector
A new near detector, SciBar, for the K2K long-baseline neutrino oscillation
expe riment was installed to improve the measurement of neutrino energy
spectrum and to study neutrino interactions in the energy region around 1 GeV.
SciBar is a 'fully active' tracking detector with fine segmentation consisting
of plastic scintillator bars. The detector was constructed in summer 2003 and
is taking data since October 2003. The basic design and initial performance is
presented.Comment: 7 pages, 4figures, Contributed to Proceedings of the 10th Vienna
Conference on Instrumentation, Vienna, February 16-21, 200
Search for Electron Neutrino Appearance in a 250 km Long-baseline Experiment
We present a search for electron neutrino appearance from accelerator
produced muon neutrinos in the K2K long baseline neutrino experiment. One
candidate event is found in the data corresponding to an exposure of 4.8*10^19
protons on target. The expected background in the absence of neutrino
oscillations is estimated to be 2.4+-0.6 events and is dominated by
mis-identification of events from neutral current pi^0 production. We exclude
the \nu_\mu to \nu_e oscillations at 90% C.L. for the effective mixing angle in
2-flavor approximation of sin^2(2theta_\mu_e) (~= 1/2 sin^2 2 th_13) > 0.15 at
Delta m^2_\mu_e = 2.8*10^{-3} eV^2, the best fit value of the \nu_\mu
disappearance analysis in K2K. The most stringent limit of sin^2(2theta_\mu_e)
< 0.09 is obtained at Delta m^2_\mu_e = 6*10^{-3} eV^2.Comment: 5 pages with 2 figures embeded in two column revtex4 style. Accepted
to be published in Phys. Rev. Let
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam
Neutral current single pi0 production induced by neutrinos with a mean energy
of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near
detector of the K2K long baseline neutrino experiment. The cross section for
this process relative to the total charged current cross section is measured to
be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of
produced pi0s is measured and is found to be in good agreement with an
expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.
Jet production in charged current deep inelastic e⁺p scatteringat HERA
The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
- …
