15 research outputs found

    Acidic Aqueous Solutions and Sulfate-Rich Mineralogy: Raman Investigations of Rio Tinto, Spain, a Model for Acid Mine Drainage and a Potential Martian Analog

    Get PDF
    En esta tesis doctoral he caracterizado soluciones acuosas sintéticas que se reproducen las condiciones extremas de las aguas de Río Tinto, Huelva, un ejemplo de entorno contaminado por drenaje ácido de mina, considerado como un escenario geo/bio/mineralógico unico en nuestro planeta que ofrece situaciones comparables a las de Marte. He analizado muestras naturales de agua del río usando espectroscopia Raman; en concreto, he estudiado las relaciones de equilibrio y especiación, y las propiedades de transporte de materia. También he caracterizado eflorescencias ricas en sulfato de Río Tinto utilizando espectroscopía Raman como herramienta fundamental, además de otras técnicas complementarias como la reflectancia en el infrarrojo cercano y el visible (VNIR) y la difracción de rayos-X. He desarrollado rutinas de procesado automático de datos para obtener la máxima información de los espectros Raman y minimizar la contribución del ruido y otras interferencias en los espectros.Departamento de Física de la Materia Condensada, Cristalografía y Mineralogí

    The Madrid's expansion Palimpsest

    Full text link
    [EN] The analysis of an unprecedented plan of Madrid´s expansion reveals several unknowns, raised some time ago, about the location of some drawings of Carlos María de Castro and about its complex processing. In the same manuscript are overlapping traces of several moments: the first drawings of the survey of territory, the original proposal for the expansion, the officially approved plan and the city that finally resulted. These traces are testimony of the similarities and discrepancies between the idea of city proposed by Castro, the one provided by the Administration and the real process on the ground.[ES] El análisis de un plano inédito del Ensanche de Madrid desvela diversas incógnitas, planteadas hace tiempo, sobre el paradero de algunos de los dibujos de Carlos María de Castro y sobre el complejo proceso de su tramitación. Se puede concluir que en el mismo documento se encuentran trazas superpuestas de varios momentos: los primeros dibujos de levantamiento del territorio, la propuesta original de ordenación del Ensanche, el anteproyecto oficialmente aprobado y la ciudad que resultó finalmente. Estas trazas son el testimonio de las similitudes y discrepancias entre la idea de ciudad propuesta por Castro, la prevista por la Administración y el proceso real sobre el terreno.De Sobrón Martínez, L.; Muñoz De Pablo, MJ. (2018). El Palimpsesto del ensanche de Madrid. EGA. Revista de Expresión Gráfica Arquitectónica. 23(33):118-129. doi:10.4995/ega.2018.6767SWORD1181292333BRAÑAS LASALA, M., 1996. "Chamberí dentro del Plan Castro: Anteproyecto y planos parciales", XI Premios 1996. Urbanismo, arquitectura y obra pública, Ayuntamiento de Madrid.DE CASTRO, C. M., 1860. Memoria descriptiva del Ante-proyecto de Ensanche de Madrid... aprobado por Real Decreto de 19 de julio de 1860. Madrid: Imp. de D. José C. de la Peña, Madrid.DE SOBRÓN, L., 2015. Al Este del Retiro. Tesis Doctoral, ETSAM-UPM.DE SOBRÓN, L., 2016. "La forma urbana de la ciudad obrera en el anteproyecto del Ensanche de Madrid". Actas del I Congreso Hispánico ISUF-H, Toledo.FRECHILLA, J., 1989. La construcción del Ensanche de Madrid. Tesis Doctoral, ETSAM-UPM.MUÑOZ DE PABLO, M.J., 2008. Chamberí, s. xix. Trazas en la ciudad. Tesis Doctoral, ETSAM-UPM

    A test in a high altitude lake of a multi-parametric rapid methodology for assessing life in liquid environments on planetary bodies: A potential new freshwater polychaete Tubeworm community

    Get PDF
    On our planet, aqueous environments such as deep sea or high-altitude aphotic lakes, subject to present or past volcanic activity and active deglaciation, may provide analogs to the aqueous environments found on such planetary bodies as Europa, Titan or Enceladus. We report here on the methodologies and technologies tested in Laguna Negra, a high altitude lake in the Central Andes, Chile, for exploring and assessing the presence of life within planetary lakes or interior oceans. We adopted a multi-parametric Rapid Ecological Assessment (REA) approach centered around collecting video imagery (by an Underwater Imaging System) and sampling benthic sediments (for sedimentological, biological and geochemical analysis) to depths of 272 m, to complement physico-chemical sampling of the water column and collection of shallow sediments for microbiological analysis (reported in separate publications). This enabled us to classify and assess the apparent status of benthic habitats, based on substrata and environmental characteristics, together with floral and faunal community characteristics and bioturbation artifacts. Video imagery showed that the lower water column was characterized by a variably intense sestonic flux of particles and debris, among which were planktonic organisms such as ostracods, copepods, and possibly cladocerans. Sediment analysis revealed at all depths abundant diatom frustules, mainly of an acidophile pennade diatom Pinnularia acidicola, amid vegetal debris likely originating from littoral macrophytes. Video imagery showed that the lakebed was partly covered by microbial mats and depositional matter and harbored an unexpectedly rich assortment of macrofauna, including sponges, tubificid worms, flatworms, bivalves and crustaceans. Various forms of bioturbation were also encountered, some with the animals in the tracks. Most notably, at the deepest site, a previously undescribed faunal feature was evident, apparently formed by a mat-like community of several layers of what appeared to be polychaete tubeworms, possibly of the family Siboglinidae. It is hypothesized that the hydrothermal activity observed in the region may supply the compounds able to support the deep-water microrganisms from which such tubeworms typically gain sustenance. Such processes could be present on other deep and aphotic liquid-water-bearing planetary bodies

    CMS tracking performance results from early LHC operation

    Get PDF
    The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays

    First measurement of the underlying event activity at the LHC with √ = 0.9 TeV

    Get PDF
    A measurement of the underlying activity in scattering processes with p T scale in the GeV region is performed in proton?proton collisions at s?=0.9?=0.9 TeV, using data collected by the CMS experiment at the LHC. Charged particle production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged particles with pseudorapidity |?|0.5 GeV/c, and azimuthal direction transverse to that of the leading object

    Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at √s=7  TeV

    Get PDF
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at √s=7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dNch/dηη|<0.5=5.78±0.01(stat)±0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from √s=0.9 to 7 TeV is [66.1±1.0(stat)±4.2(syst)]%. The mean transverse momentum is measured to be 0.545±0.005(stat)±0.015(syst)  GeV/c. The results are compared with similar measurements at lower energies

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9 and 2.36TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at s?=0.9?=0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between --2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN ch/d?||?|<0.5, are 3:48 ± 0:02 (stat.) ± 0.13 (syst.) and 4:47 ± 0:04 (stat.) ± 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p¯¯¯p?¯? and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    Get PDF
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 ± 0.0032 (stat.) ± 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experimentsWe thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l'Énergie Atomique, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz–Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy, and Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; and the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy)

    Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds

    Get PDF
    Potential benthic habitats of early Mars lakes, probably oligotrophic, could range from hydrothermal to cold sediments. Dynamic processes in the water column (such as turbidity or UV penetration) as well as in the benthic bed (temperature gradients, turbation, or sedimentation rate) contribute to supply nutrients to a potential microbial ecosystem. High altitude, oligotrophic, and deep Andean lakes with active deglaciation processes and recent or past volcanic activity are natural models to assess the feasibility of life in other planetary lake/ocean environments and to develop technology for their exploration. We sampled the benthic sediments (down to 269 m depth) of the oligotrophic lake Laguna Negra (Central Andes, Chile) to investigate its ecosystem through geochemical, biomarker profiling, and molecular ecology studies. The chemistry of the benthic water was similar to the rest of the water column, except for variable amounts of ammonium (up to 2.8 ppm) and nitrate (up to 0.13 ppm). A life detector chip with a 300-antibody microarray revealed the presence of biomass in the form of exopolysaccharides and other microbial markers associated to several phylogenetic groups and potential microaerobic and anaerobic metabolisms such as nitrate reduction. DNA analyses showed that 27% of the Archaea sequences corresponded to a group of ammonia-oxidizing archaea (AOA) similar (97%) to Nitrosopumilus spp. and Nitrosoarchaeum spp. (Thaumarchaeota), and 4% of Bacteria sequences to nitrite-oxidizing bacteria from the Nitrospira genus, suggesting a coupling between ammonia and nitrite oxidation. Mesocosm experiments with the specific AOA inhibitor 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) demonstrated an AOA-associated ammonia oxidation activity with the simultaneous accumulation of nitrate and sulfate. The results showed a rich benthic microbial community dominated by microaerobic and anaerobic metabolisms thriving under aphotic, low temperature (4°C), and relatively high pressure, that might be a suitable terrestrial analog of other planetary settings

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
    corecore