367 research outputs found

    Blood and milk neutrophil chemiluminescence and viability in primiparous and pluriparous dairy cows during late pregnancy, around parturition and early lactation.

    Get PDF
    Extensive studies have shown the polymorphonuclear leukocytes (PMN) dysfunction inextricably links to parturition. To investigate the effect of parity on PMN function, phorbol 12-myristate 13-acetate (PMA) stimulated luminol-amplified chemiluminescence (CL) and viability. of blood and milk PMN were investigated in primiparous and pluriparous dairy cows during periparturient period. The CL kinetics of blood and milk PMN and hematological profiles were also, assessed. Milk PMN CL was always lower than blood PMN CL. Blood and milk PMN CL and milk PMN viability were significantly higher in primiparous cows throughout the study. Blood PMN CL in pluriparous cows showed a,sharper decrease. Both in pluriparous and in primiparous cows, minimal blood PMN CL appeared at periparturient day (PPD) 2. After PPD 7, blood PMN CL recovery rate was faster in primiparous cows. Milk PMN CL was minimal at PPD 2. in both groups. Whereas no changes were observed in blood PMN viability, the viability of milk PMN in. primiparous cows was substantially higher than in pluriparous cows. The number of circulating eosinophils and immature neutrophils was substantially higher in primiparous cows throughout the study. The CL kinetics of blood PMN at PPD -2 and 2 and of milk PMN at PPD 2 exhibited different responses to PMA, with higher intensity and durability, peaking and subsiding more slowly in primiparous dairy cows. The pronounced. reduction in PMN CL and viability in milk PMN of pluriparous cows may be involved in the underlying mechanisms that make these animals more susceptible to periparturient infectious diseases

    The Global Risk Approach Should Be Better Applied in French Hypertensive Patients: A Comparison between Simulation and Observation Studies

    Get PDF
    The prediction of the public health impact of a preventive strategy provides valuable support for decision-making. International guidelines for hypertension management have introduced the level of absolute cardiovascular risk in the definition of the treatment target population. The public health impact of implementing such a recommendation has not been measured.We assessed the efficiency of three treatment scenarios according to historical and current versions of practice guidelines on a Realistic Virtual Population representative of the French population aged from 35 to 64 years: 1) BP≥160/95 mm Hg; 2) BP≥140/90 mm Hg and 3) BP≥140/90 mm Hg plus increased CVD risk. We compared the eligibility following the ESC guidelines with the recently observed proportion of treated amongst hypertensive individuals reported by the Etude Nationale Nutrition Santé survey. Lowering the threshold to define hypertension multiplied by 2.5 the number of eligible individuals. Applying the cardiovascular risk rule reduced this number significantly: less than 1/4 of hypertensive women under 55 years and less than 1/3 of hypertensive men below 45 years of age. This was the most efficient strategy. Compared to the simulated guidelines application, men of all ages were undertreated (between 32 and 60%), as were women over 55 years (70%). By contrast, younger women were over-treated (over 200%).The global CVD risk approach to decide for treatment is more efficient than the simple blood pressure level. However, lack of screening rather than guideline application seems to explain the low prescription rates among hypertensive individuals in France. Multidimensional analyses required to obtain these results are possible only through databases at the individual level: realistic virtual populations should become the gold standard for assessing the impact of public health policies at the national level

    Insulin Resistance Impairs Circulating Angiogenic Progenitor Cell Function and Delays Endothelial Regeneration

    Get PDF
    OBJECTIVE Circulating angiogenic progenitor cells (APCs) participate in endothelial repair after arterial injury. Type 2 diabetes is associated with fewer circulating APCs, APC dysfunction, and impaired endothelial repair. We set out to determine whether insulin resistance adversely affects APCs and endothelial regeneration. RESEARCH DESIGN AND METHODS We quantified APCs and assessed APC mobilization and function in mice hemizygous for knockout of the insulin receptor (IRKO) and wild-type (WT) littermate controls. Endothelial regeneration after femoral artery wire injury was also quantified after APC transfusion. RESULTS IRKO mice, although glucose tolerant, had fewer circulating Sca-1+/Flk-1+ APCs than WT mice. Culture of mononuclear cells demonstrated that IRKO mice had fewer APCs in peripheral blood, but not in bone marrow or spleen, suggestive of a mobilization defect. Defective vascular endothelial growth factor–stimulated APC mobilization was confirmed in IRKO mice, consistent with reduced endothelial nitric oxide synthase (eNOS) expression in bone marrow and impaired vascular eNOS activity. Paracrine angiogenic activity of APCs from IRKO mice was impaired compared with those from WT animals. Endothelial regeneration of the femoral artery after denuding wire injury was delayed in IRKO mice compared with WT. Transfusion of mononuclear cells from WT mice normalized the impaired endothelial regeneration in IRKO mice. Transfusion of c-kit+ bone marrow cells from WT mice also restored endothelial regeneration in IRKO mice. However, transfusion of c-kit+ cells from IRKO mice was less effective at improving endothelial repair. CONCLUSIONS Insulin resistance impairs APC function and delays endothelial regeneration after arterial injury. These findings support the hypothesis that insulin resistance per se is sufficient to jeopardize endogenous vascular repair. Defective endothelial repair may be normalized by transfusion of APCs from insulin-sensitive animals but not from insulin-resistant animals

    Serum Levels of FGF-21 Are Increased in Coronary Heart Disease Patients and Are Independently Associated with Adverse Lipid Profile

    Get PDF
    BACKGROUND: Fibroblast growth factor 21 (FGF-21) is a metabolic regulator with multiple beneficial effects on glucose homeostasis and lipid metabolism in animal models. The relationship between plasma levels of FGF-21 and coronary heart disease (CHD) in unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to investigate the correlation of serum FGF-21 levels and lipid metabolism in the patients with coronary heart disease. We performed a logistic regression analysis of the relation between serum levels of FGF-21 and CHD patients with and without diabetes and hypertension. This study was conducted in the Departments of Endocrinology and Cardiovascular Diseases at two University Hospitals. Participants consisted of one hundred and thirty-five patients who have been diagnosed to have CHD and sixty-one control subjects. Serum FGF-21 level and levels of fasting blood glucose; triglyceride; apolipoprotein B100; HOMA-IR; insulin; total cholesterol; HDL-cholesterol; LDL-cholesterol; and C-reactive protein were measured. We found that median serum FGF-21 levels were significantly higher in CHD than that of control subjects (P<0.0001). Serum FGF-21 levels in CHD patients with diabetes, hypertension, or both were higher than that of patients without these comorbidities. Serum FGF-21 levels correlated positively with triglycerides, fasting blood glucose, apolipoprotein B100, insulin and HOMA-IR but negatively with HDL-C and apolipoprotein A1 after adjusting for BMI, diabetes and hypertension. Logistic regression analysis demonstrated that FGF-21 showed an independent association with triglyceride and apolipoprotein A1. CONCLUSIONS/SIGNIFICANCE: High levels of FGF-21 are associated with adverse lipid profiles in CHD patients. The paradoxical increase of serum FGF-21 in CHD patients may indicate a compensatory response or resistance to FGF-21

    Adolescents with metabolic syndrome have a history of low aerobic fitness and physical activity levels

    Get PDF
    Abstract: Purpose: Metabolic syndrome (MS) is a clustering of cardiovascular disease risk factors that identifies individuals with the highest risk for heart disease. Two factors that may influence the MS are physical activity and aerobic fitness. This study determined if adolescent with the MS had low levels of aerobic fitness and physical activity as children. Methods: This longitudinal, exploratory study had 389 participants: 51% girls, 84% Caucasian, 12% African American, 1% Hispanic, and 3% other races, from the State of North Carolina. Habitual physical activity (PA survey), aerobic fitness (VO2max), body mass index (BMI), blood pressure, and lipids obtained at 7–10 y of age were compared to their results obtained 7 y later at ages 14–17 y. Results: Eighteen adolescents (4.6%) developed 3 or more characteristics of the MS. Logistic regression, adjusting for BMI percentile, blood pressure, and cholesterol levels, found that adolescents with the MS were 6.08 (95%CI = 1.18–60.08) times more likely to have low aerobic fitness as children and 5.16 (95%CI = 1.06–49.66) times more likely to have low PA levels. Conclusion: Low levels of childhood physical activity and aerobic fitness are associated with the presence of the metabolic syndrome in adolescents. Thus, efforts need to begin early in childhood to increase exercise

    Clustering of metabolic syndrome components in a Middle Eastern diabetic and non-diabetic population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) encompasses a cluster of coronary heart disease and diabetes mellitus risk factors. In this study, we aimed to elucidate the factors underlying the clustering of MetS components in diabetic and non-diabetic individuals.</p> <p>Methods</p> <p>Factor analysis was performed on 2978 (1652 non-diabetic and 1326 diabetic) participants. Entering waist circumference, homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides, high-density lipoprotein-cholesterol (HDL-C) and systolic blood pressure (SBP), we performed exploratory factor analysis in diabetic and non-diabetic individuals separately. The analysis was repeated after replacing triglycerides and HDL-C with triglycerides to HDL-C ratio (triglycerides/HDL-C). MetS was defined by either adult treatment panel III (ATPIII), international diabetes federation (IDF) criteria, or by the modified form of IDF using waist circumference cut-off points for Iranian population.</p> <p>Results</p> <p>The selection of triglycerides and HDL-C as two distinct variables led to identifying two factors explaining 61.3% and 55.4% of the total variance in non-diabetic and diabetic participants, respectively. In both diabetic and non-diabetic subjects, waist circumference, HOMA-IR and SBP loaded on factor 1. Factor 2 was mainly determined by triglycerides and HDL-C. Factor 1 and 2 were directly and inversely associated with MetS, respectively. When triglycerides and HDL-C were replaced by triglycerides/HDL-C, one factor was extracted, which explained 47.6% and 38.8% of the total variance in non-diabetic and diabetic participants, respectively.</p> <p>Conclusion</p> <p>This study confirms that in both diabetic and non-diabetic participants the concept of a single underlying factor representing MetS is plausible.</p
    corecore