1,797 research outputs found

    PHP36: COSTS ASSOCIATED WITH FALLS IN COMMUNITY DWELLING ELDERS

    Get PDF

    The observational signature of modelled torsional waves and comparison to geomagnetic jerks

    Get PDF
    Torsional Alfven waves involve the interaction of zonal fluid flow and the ambient magnetic field in the core. Consequently, they perturb the background magnetic field and induce a secondary magnetic field. Using a steady background magnetic field from observationally constrained field models and azimuthal velocities from torsional wave forward models, we solve an induction equation for the wave-induced secular variation (SV). We construct time series and maps of wave-induced SV and investigate how previously identified propagation characteristics manifest in the magnetic signals, and whether our modelled travelling torsional waves are capable of producing signals that resemble jerks in terms of amplitude and timescale. Fast torsional waves with amplitudes and timescales consistent with a recent study of the 6 yr ∆LOD signal induce very rapid, small (maximum ∼2 nT/yr at Earth’s surface) SV signals that would likely be difficult to be resolve in observations of Earth’s SV. Slow torsional waves with amplitudes and timescales consistent with other studies produce larger SV signals that reach amplitudes of ∼20 nT/yr at Earth’s surface. We applied a two-part linear regression jerk detection method to the SV induced by slow torsional waves, using the same parameters as used on real SV, which identified several synthetic jerk events. As the local magnetic field morphology dictates which regions are sensitive to zonal core flow, and not all regions are sensitive at the same time, the modelled waves generally produce synthetic jerks that are observed on regional scales and occur in a single SV component. However, high wave amplitudes during reflection from the stress-free CMB induce large-scale SV signals in all components, which results in a global contemporaneous jerk event such as that observed in 1969. In general, the identified events are periodic due to waves passing beneath locations at fixed intervals and the SV signals are smoothly varying. These smooth signals are more consistent with the geomagnetic jerks envisaged by Demetrescu and Dobrica than the sharp ‘V’ shapes that are typically associated with geomagnetic jerks

    Torsional Axisymmetric Core Oscillations Visualiser (TACO-VIS): A Python module for animating torsional wave data for fluid planetary cores

    Get PDF
    TACO-VIS provides a simple set of Python visualisation tools for 2D flow velocity data from fluid planetary interiors. It is mainly intended for animating torsional wave models for publication and presentation purposes. TACO-VIS is a lightweight module built only upon the common numpy/matplotlib Python packages and is free to be used and modified as the user requires

    Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid

    Get PDF
    Motivated by the dynamics within terrestrial bodies, we consider a rotating, strongly thermally stratified fluid within a spherical shell subject to a prescribed laterally inhomogeneous heat-flux condition at the outer boundary. Using a numerical model, we explore a broad range of three key dimensionless numbers: a thermal stratification parameter (the relative size of boundary temperature gradients to imposed vertical temperature gradients), 10^−3 ≤ S ≤ 10^4, a buoyancy parameter (the strength of applied boundary heat-flux anomalies), 10^−2 ≤ B ≤ 10^6, and the Ekman number (ratio of viscous to Coriolis forces), 10^−6 ≤ E ≤ 10^−4. We find both steady and time-dependent solutions and delineate the regime boundaries. We focus on steady-state solutions, for which a clear transition is found between a low S regime, in which buoyancy dominates the dynamics, and a high S regime, in which stratification dominates. For the low-S regime, we find that the characteristic flow speed scales as B^2/3, whereas for high-S, the radial and horizontal velocities scale respectively as ur ~ S^−1, uh ~S^−3/4 B^1/4 and are confined within a thin layer of depth (SB)^−1/4 at the outer edge of the domain. For the Earth, if lower mantle heterogeneous structure is due principally to chemical anomalies, we estimate that the core is in the high-S regime and steady flows arising from strong outer boundary thermal anomalies cannot penetrate the stable layer. However, if the mantle heterogeneities are due to thermal anomalies and the heat-flux variation is large, the core will be in a low-S regime in which the stable layer is likely penetrated by boundary-driven flows

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    The role of Comprehension in Requirements and Implications for Use Case Descriptions

    Get PDF
    Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements. Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design

    SMARTPOP: Inferring the impact of social dynamics on genetic diversity through high speed simulations

    Get PDF
    Background: Social behavior has long been known to influence patterns of genetic diversity, but the effect of social processes on population genetics remains poorly quantified - partly due to limited community-level genetic sampling (which is increasingly being remedied), and partly to a lack of fast simulation software to jointly model genetic evolution and complex social behavior, such as marriage rules.Results: To fill this gap, we have developed SMARTPOP - a fast, forward-in-time genetic simulator - to facilitate large-scale statistical inference on interactions between social factors, such as mating systems, and population genetic diversity. By simultaneously modeling genetic inheritance and dynamic social processes at the level of the individual, SMARTPOP can simulate a wide range of genetic systems (autosomal, X-linked, Y chromosomal and mitochondrial DNA) under a range of mating systems and demographic models. Specifically designed to enable resource-intensive statistical inference tasks, such as Approximate Bayesian Computation, SMARTPOP has been coded in C++ and is heavily optimized for speed and reduced memory usage.Conclusion: SMARTPOP rapidly simulates population genetic data under a wide range of demographic scenarios and social behaviors, thus allowing quantitative analyses to address complex socio-ecological questions. © 2014 Guillot and Cox; licensee BioMed Central Ltd

    Holographic Kondo Model in Various Dimensions

    Full text link
    We study the addition of localised impurities to U(N) Supersymmetric Yang-Mills theories in (p+1)-dimensions by using the gauge/gravity correspondence. From the gravity side, the impurities are introduced by considering probe D(8-p)-branes extendingalong the time and radial directions and wrapping an (7-p)-dimensional submanifold of the internal (8-p)-sphere, so that the degrees of freedom are point-like from the gauge theory perspective. We analyse both the configuration in which the branes generate straight flux tubes -corresponding to actual single impurities - and the one in which connected flux tubes are created- corresponding to dimers. We discuss the thermodynamics of both the configurations and the related phase transition. In particular, the specific heat of the straight flux-tube configuration is negative for p<3, while it is never the case for the connected one. We study the stability of the system by looking at the impurity fluctuations. Finally, we characterise the theory by computing one- and two-point correlators of the gauge theory operators dual to the impurity fluctuations. Because of the underlying generalised conformal structure, such correlators can be expressed in terms of an effective coupling constant (which runs because of its dimensionality) and a generalised conformal dimension.Comment: 56 pages, 3 figures; v2: typos correcte

    Chern-Simons theory on L(p,q) lens spaces and Gopakumar-Vafa duality

    Full text link
    We consider aspects of Chern-Simons theory on L(p,q) lens spaces and its relation with matrix models and topological string theory on Calabi-Yau threefolds, searching for possible new large N dualities via geometric transition for non-SU(2) cyclic quotients of the conifold. To this aim we find, on one hand, some novel matrix integral representations of the SU(N) CS partition function in a generic flat background for the whole L(p,q) family and provide a solution for its large N dynamics; on the other, we perform in full detail the construction of a family of would-be dual closed string backgrounds via conifold geometric transition from T^*L(p,q). We can then explicitly prove that Gopakumar-Vafa duality in a fixed vacuum fails in the case q>1, and briefly discuss how it could be restored in a non-perturbative setting.Comment: 17 pages, 6 figures; references adde
    corecore