78 research outputs found

    Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice

    Get PDF
    Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE

    Observation of a New Excited Beauty Strange Baryon Decaying to Ξb- π+π-

    Get PDF
    The Ξb-π+π- invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb-1. The ground state Ξb- is reconstructed via its decays to J/ψΞ- and J/ψΛK-. A narrow resonance, labeled Ξb(6100)-, is observed at a Ξb-π+π- invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Ξb-) MeV, where the last uncertainty reflects the precision of the Ξb- baryon mass. The upper limit on the Ξb(6100)- natural width is determined to be 1.9 MeV at 95% confidence level. The low Ξb(6100)- signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξc baryon states, the new Ξb(6100)- resonance and its decay sequence are consistent with the orbitally excited Ξb- baryon, with spin and parity quantum numbers JP=3/2-

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV

    Get PDF
    ArXiv ePrint: 2111.03027Copyright © 2022 CERN for the benefit of the CMS collaboration. Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb-1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.SCOAP
    • 

    corecore