51 research outputs found
Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the Southern North Sea
Atmospheric methane (CH4) concentrations have more than doubled since the beginning of the industrial age, making CH4 the second most important anthropogenic greenhouse gas after carbon dioxide (CO2). The oil and gas sector represent one of the major anthropogenic CH4 emitters as it is estimated to account for 22 % of global anthropogenic CH4 emissions. An airborne field campaign was conducted in April–May 2019 to study CH4 emissions from offshore gas facilities in the Southern North Sea with the aim to derive emission estimates using a top-down (measurement-led) approach. We present CH4 fluxes for six UK and five Dutch offshore platforms/platform complexes using the well-established mass balance flux method. We identify specific gas production emissions and emission processes (venting/fugitive or flaring/combustion) using observations of co-emitted ethane (C2H6) and CO2. We compare our top-down estimated fluxes with a ship-based top-down study in the Dutch sector and with bottom-up estimates from a globally gridded annual inventory, UK national annual point-source inventories, and with operator-based reporting for individual Dutch facilities. In this study, we find that all inventories, except for the operator-based facility-level reporting, underestimate measured emissions, with the largest discrepancy observed with the globally gridded inventory. Individual facility reporting, as available for Dutch sites for the specific survey date, shows better agreement with our measurement-based estimates. For all sampled Dutch installations together, we find that our estimated flux of (122.7 ± 9.7) kg h-1 deviates by a factor 0.7 (0.35–12) from reported values (183.1 kg h-1). Comparisons with aircraft observations in two other offshore regions (Norwegian Sea and Gulf of Mexico) show that measured, absolute facility-level emission rates agree with the general distribution found in other offshore basins despite different production types (oil, gas) and gas production rates, which vary by two orders of magnitude. Therefore, mitigation is warranted equally across geographies.</p
Methane flux from flowback operations at a shale gas site
We report measurements of methane (CH4) mixing ratios and emission fluxes derived from sampling at a monitoring station at an exploratory shale gas extraction facility in Lancashire, England. Elevated ambient CH4 mixing ratios were recorded in January 2019 during a period of cold-venting associated with a nitrogen lift process at the facility. These processes are used to clear the well to stimulate flow of natural gas from the target shale. Estimates of CH4 flux during the emission event were made using three independent modeling approaches: Gaussian plume dispersion (following both a simple Gaussian plume inversion and the US EPA OTM 33-A method), and a Lagrangian stochastic transport model (WindTrax). The three methods yielded an estimated peak CH4 flux during January 2019 of approximately 70 g s−1. The total mass of CH4 emitted during the six-day venting period was calculated to be 2.9, 4.2 ± 1.4(1σ) and 7.1 ± 2.1(1σ) tonnes CH4 using the simple Gaussian plume model, WindTrax, and OTM-33A methods, respectively. Whilst the flux approaches all agreed within 1σ uncertainty, an estimate of 4.2 (± 1.4) tonnes CH4 represents the most confident assessment due to the explicit modeling of advection and meteorological stability permitted using the WindTrax model. This mass is consistent with fluxes calculated by the Environment Agency (in the range 2.7 to 6.8 tonnes CH4), using emission data provided by the shale site operator to the regulator. This study provides the first CH4 emission estimate for a nitrogen lift process and the first-reported flux monitoring of a UK shale gas site, and contributes to the evaluation of the environmental impacts of shale gas operations worldwide. This study also provides forward guidance on future monitoring applications and flux calculation in transient emission events. Implications: This manuscript discusses atmospheric measurements near to the UK’s first hydraulic fracturing facility, which has very high UK public, media, and policy interest. The focus of this manuscript is on a single week of data in which a large venting event at the shale gas site saw emissions of ~4 tonnes of methane to atmosphere, in breach of environmental permits. These results are likely to beresults are likely to be reported by the media and may influence future policy decisions concerning the UK hydraulic fracturing industry
Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform : method development for quantification and source identification of methane emissions
Emissions of methane (CH4) from offshore oil and gas installations are poorly ground-truthed, and quantification relies heavily on the use of emission factors and activity data. As part of the United Nations Climate & Clean Air Coalition (UN CCAC) objective to study and reduce short-lived climate pollutants (SLCPs), a Twin Otter aircraft was used to survey CH4 emissions from UK and Dutch offshore oil and gas installations. The aims of the surveys were to (i) identify installations that are significant CH4 emitters, (ii) separate installation emissions from other emissions using carbon-isotopic fingerprinting and other chemical proxies, (iii) estimate CH4 emission rates, and (iv) improve flux estimation (and sampling) methodologies for rapid quantification of major gas leaks. In this paper, we detail the instrument and aircraft set-up for two campaigns flown in the springs of 2018 and 2019 over the southern North Sea and describe the developments made in both the planning and sampling methodology to maximise the quality and value of the data collected. We present example data collected from both campaigns to demonstrate the challenges encountered during offshore surveys, focussing on the complex meteorology of the marine boundary layer and sampling discrete plumes from an airborne platform. The uncertainties of CH4 flux calculations from measurements under varying boundary layer conditions are considered, as well as recommendations for attribution of sources through either spot sampling for volatile organic compounds (VOCs) /δ 13CCH4 or using in situ instrumental data to determine C2H6-CH4 ratios. A series of recommendations for both planning and measurement techniques for future offshore work within marine boundary layers is provided
Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf
The oil and gas (O&G) sector is a significant source of methane (CH4) emissions. Quantifying these emissions remains challenging, with many studies highlighting discrepancies between measurements and inventory-based estimates. In this study, we present CH4 emission fluxes from 21 offshore O&G facilities collected in 10 O&G fields over two regions of the Norwegian continental shelf in 2019. Emissions of CH4 derived from measurements during 13 aircraft surveys were found to range from 2.6 to 1200 t yr−1 (with a mean of 211 t yr−1 across all 21 facilities). Comparing this with aggregated operator-reported facility emissions for 2019, we found excellent agreement (within 1σ uncertainty), with mean aircraft-measured fluxes only 16 % lower than those reported by operators. We also compared aircraft-derived fluxes with facility fluxes extracted from a global gridded fossil fuel CH4 emission inventory compiled for 2016. We found that the measured emissions were 42 % larger than the inventory for the area covered by this study, for the 21 facilities surveyed (in aggregate). We interpret this large discrepancy not to reflect a systematic error in the operator-reported emissions, which agree with measurements, but rather the representativity of the global inventory due to the methodology used to construct it and the fact that the inventory was compiled for 2016 (and thus not representative of emissions in 2019). This highlights the need for timely and up-to-date inventories for use in research and policy. The variable nature of CH4 emissions from individual facilities requires knowledge of facility operational status during measurements for data to be useful in prioritising targeted emission mitigation solutions. Future surveys of individual facilities would benefit from knowledge of facility operational status over time. Field-specific aggregated emissions (and uncertainty statistics), as presented here for the Norwegian Sea, can be meaningfully estimated from intensive aircraft surveys. However, field-specific estimates cannot be reliably extrapolated to other production fields without their own tailored surveys, which would need to capture a range of facility designs, oil and gas production volumes, and facility ages. For year-on-year comparison to annually updated inventories and regulatory emission reporting, analogous annual surveys would be needed for meaningful top-down validation. In summary, this study demonstrates the importance and accuracy of detailed, facility-level emission accounting and reporting by operators and the use of airborne measurement approaches to validate bottom-up accounting
Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia
Methane (CH4) is a potent greenhouse gas with a warming potential 84 times that of carbon dioxide (CO2) over a 20-year period. Atmospheric CH4 concentrations have been rising since the nineteenth century but the cause of large increases post-2007 is disputed. Tropical wetlands are thought to account for ∼20% of global CH4 emissions, but African tropical wetlands are understudied and their contribution is uncertain. In this work, we use the first airborne measurements of CH4 sampled over three wetland areas in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne measurements were used: Airborne mass balance, airborne eddy-covariance, and an atmospheric inversion. Measured emissions (ranging from 5 to 28 mg m−2 hr−1) were found to be an order of magnitude greater than those simulated by land surface models (ranging from 0.6 to 3.9 mg m−2 hr−1), suggesting much greater emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH4 sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global warming below a threshold of 2°C above preindustrial levels
Suicide and Suicide Risk in Lesbian, Gay, Bisexual, and Transgender Populations: Review and Recommendations
Despite strong indications of elevated risk of suicidal behavior in lesbian, gay, bisexual, and transgender people, limited attention has been given to research, interventions or suicide prevention programs targeting these populations. This article is a culmination of a three-year effort by an expert panel to address the need for better understanding of suicidal behavior and suicide risk in sexual minority populations, and stimulate the development of needed prevention strategies, interventions and policy changes. This article summarizes existing research findings, and makes recommendations for addressing knowledge gaps and applying current knowledge to relevant areas of suicide prevention practice
Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights.
We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'
Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights
We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa.
This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.Natural Environment Research Council (NERC): NE/S00159X/1; NE/N016238/1; NE/P019641/
Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands : The MOYA and ZWAMPS flights
We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ 13 C CH 4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ 13 C CH 4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ 13 C CH 4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ 13 C CH 4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3: C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ 13 C CH 4 values were around -28‰. By contrast, African C4 tropical grass fire δ 13 C CH 4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ 13 C CH 4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ 13 C CH 4 values predicted by global atmospheric models are highly sensitive to the δ 13 C CH 4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'
Young women, power, intimate relationships and wellbeing : the circumstances that enable young women's resistant subjective desires : "a pash and a dash" : a thesis presented in partial fulfillment of the requirements for the degree of Doctorate in Philosophy at Massey University, Wellington, New Zealand
This research explored gendered power, young women and resistance. I examined Cromby’s (2006) social constructionist theory of ‘embodied knowing’, Davies and colleagues’ (2001; 2002) theory of subjectivity and Braidotti’s (2003) theory of material embodiment to explore the silences present in feminist poststructuralist theory in the area of young women, subjective desire and wellbeing. The primary aim was to identify resistant ways young women could be within and outside of heterosexual relationships that increases, not decreases, their wellbeing. I conducted discussions with 6 friendship groups of 16-18 year old women, and 13 interviews with a subset of these participants. Critical discourse analysis (Parker, 1999) was employed to identify 7 main discourses in the data, namely: security; developmental; balance; risk and pleasure; girlfriends are fun; female friends negotiating ‘abject’ other and being a nomad. I examined the intersection between the corporeal body, discourse and material resources to identify the circumstances that enabled resistance. Access to resistant forms of female subjectivity was also promoted through the use of mimesis and my intentional positive positioning of the participants within research conversations. Cromby’s ideas of referential difference identified that participants desired the positive visibility of early heterosexual relationships but not the critical visibility of dominating and ‘clingy’ boyfriends. Cromby’s (2006) theory of embodied knowing accessed ‘feelings’ and more corporeal sensations and identified that the ideology of ‘might is right’ is still operating in participants’ lives and silences resistance to male dominance. All participants talked about experiences of empathy and pleasure within female friendships which enabled resistance to heterosexual discourses and promoted care for other females in private and public spaces. Braidotti’s notions of women’s pre-linguistic and linguistic drive ‘to be’ enables theorizing that resistant subjective desires are partially co-constituted through reiterative practices. Future research needs to explore: 1) how boys can be raised in the presence of a legitimate authoritative maternal presence in order to establish reiterative practices of an ethics of care for an equal different female others prior to being a boyfriend; 2) how girls can establish reiterative practices of desiring not to be constantly visible to others and to ‘know’ at an embodied location that not to be visible is not not to be
- …