38 research outputs found

    Effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the duodenum and jejunum in broiler chickens

    Get PDF
    The intestinal disease coccidiosis, caused by Eimeria parasites, impacts nutrient absorption in broiler chickens, leading to weight gain depression and major losses in the poultry industry. To develop alternatives to antibiotics for treating infected chickens, the gut microbiota has been researched because of its association with health factors such as nutrient exchange, immune system modulation, digestive system physiology, and pathogen exclusion. The aim of this study was to determine the effect of Eimeria acervulina infection on the luminal and mucosal microbiota of both the duodenum (DuoL and DuoM) and jejunum (JejL and JejM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. 16S rRNA amplicon sequencing was utilized to characterize the microbiota and analyze differences in alpha and beta diversity between infected (IF) and control (C) birds at each time point. Alpha diversity differed between IF and C birds in DuoM and JejM microbiota. Combined with beta diversity results, DuoM microbiota appeared to be affected by infection in the longer-term, while JejM microbiota were affected in the shorter-term. Relative abundances of bacterial taxa known for short-chain fatty acid (SCFA) production, such as Lachnospiraceae, Subdoligranulum, and Peptostreptococcaceae, tended to be lower in IF birds for all four microbiota. Moreover, predicted functional abundances showed MetaCyc pathways related to SCFA production, especially butyrate, may be influenced by these differences in bacterial relative abundance. Our findings expand understanding of how Eimeria infection affects luminal and mucosal microbiota in the duodenum and jejunum, and further research on metagenomic function may provide insights on the degree of influence duodenal and jejunal bacteria have on chicken health

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    Cecal microbiota composition differs under normal and high ambient temperatures in genetically distinct chicken lines

    No full text
    Abstract Modern broilers, selected for high growth rate, are more susceptible to heat stress (HS) as compared to their ancestral jungle fowl (JF). HS affects epithelia barrier integrity, which is associated with gut microbiota. The aim of this study was to determine the effect of HS on the cecal luminal (CeL) and cecal mucosal (CeM) microbiota in JF and three broiler populations: Athens Canadian Random Bred (ACRB), 1995 Random Bred (L1995), and Modern Random Bred (L2015). Broiler chicks were subjected to thermoneutral TN (24 °C) or chronic cyclic HS (8 h/day, 36 °C) condition from day 29 until day 56. HS affected richness in CeL microbiota in a line-dependent manner, decreasing richness in slow-growing JF and ACRB lines, while increasing richness in faster-growing L1995 and L2015. Microbiota were distinct between HS and TN conditions in CeL microbiota of all four lines and in CeM microbiota of L2015. Certain bacterial genera were also affected in a line-dependent manner, with HS tending to increase relative abundance in CeL microbiota of slow-growing lines, while decreases were common in fast-growing lines. Predictive functional analysis suggested a greater impact of HS on metabolic pathways in L2015 compared to other lines

    Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic transcripts involved in food intake and metabolism

    No full text
    International audienceIn mammals, insulin regulates blood glucose levels and plays a key regulatory role in appetite via the hypothalamus. In contrast, chickens are characterized by atypical glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic beta cells, and large resistance to exogenous insulin. The aim of the present study was to investigate in chickens the effects of 5 h fasting and 5 h insulin immuno-neutralization on hypothalamic mRNA levels of 23 genes associated with food intake, energy balance, and glucose metabolism. We observed that insulin immune-neutralization by administration of anti-porcine insulin guinea pig serum (AI) significantly decreased food intake and increased plasma glucose levels in chickens, while 5 h fasting produced a limited and non-significant reduction in plasma glucose. In addition, 5 h fasting increased levels of NPY, TAS1R1, DIO2, LEPR, GLUT1, GLUT3, GLUT8, and GCK mRNA. In contrast, AI had no impact on the levels of any selected mRNA. Therefore, our results demonstrate that in chickens, food intake inhibition or satiety mechanisms induced by insulin immuno-neutralization do not rely on hypothalamic abundance of the 23 transcripts analyzed. The hypothalamic transcripts that were increased in the fasted group are likely components of a mechanism of adaptation to fasting in chickens

    Attenuation by leptin of the effects of fasting on ovarian function in hens (Gallus domesticus)

    Full text link
    Šutnja uprave je situacija kad službena osoba ne donese i ne dostavi stranci u zakonom propisanom roku rješenje, već se ogluši na uredan zahtjev stranke. U radu su definirani uprava, upravni odnosi, a posebna pozornost usmjerena je na šutnju uprave u Republici Hrvatskoj, koja predstavlja pogrešku u radu tijela državne uprave, a ona je u Republici Hrvatskoj normirana kroz Zakon o općem upravnom postupku i Zakon o upravnim sporovima. Cilj ovog rada je definirati važnost efikasnog rada javne uprave, kao i brzinu njenog funkcioniranja u suvremenom svijetu. U ovom radu predstavljeno je zakonsko uređenje šutnje uprave kroz povijest, pa sve do donošenja novog zakona 2009.godine. Nadalje, obrađuju se članci iz važećeg ZUP-a i ZUS-a koji se danas primjenjuju, a odnose se na šutnju uprave. Zatim se obrađuje pozitivna i negativna fikcija u institutu zaštite građana od šutnje uprave, s posebnim naglaskom na premdjevu usvajanja zahtjeva stranke, sa svojim pozitivnim i negativnim učincima. U zadnjem poglavlju opisani su pravni lijekovi koji se primjenjuju u zaštiti od šutnje uprave

    Table3_Temporal dynamics of the chicken mycobiome.XLSX

    No full text
    The microbiome is an integral part of chicken health and can affect immunity, nutrient utilization, and performance. The role of bacterial microbiota members in host health is relatively well established, but less attention has been paid to fungal members of the gastrointestinal tract (GIT) community. However, human studies indicate that fungi play a critical role in health. Here, we described fungal communities, or mycobiomes, in both the lumen and mucosa of the chicken ileum and cecum from hatch through 14 days of age. We also assessed the effects of delayed access to feed immediately post-hatch (PH) on mycobiome composition, as PH feed delay is commonly associated with poor health performance. Chicken mycobiomes in each of the populations were distinct and changed over time. All mycobiomes were dominated by Gibberella, but Aspergillus, Cladosporium, Sarocladium, Meyerozyma, and Penicillium were also abundant. Relative abundances of some taxa differed significantly over time. In the cecal and ileal lumens, Penicillium was present in extremely low quantities or absent during days one and two and then increased over time. Meyerozyma and Wickerhamomyces also increased over time in luminal sites. In contrast, several highly abundant unclassified fungi decreased after days one and two, highlighting the need for improved understanding of fungal gut biology. Mycobiomes from chicks fed during the first 2 days PH versus those not fed during the first 2 days did not significantly differ, except during days one and two. Similarities observed among mycobiomes of fed and unfed chicks at later timepoints suggest that delays in PH feeding do not have long lasting effects on mycobiome composition. Together, these results provide a foundation for future mycobiome studies, and suggest that negative health and production impacts of delayed feeding are not likely related to the development of fungal populations in the GIT.</p
    corecore