567 research outputs found
The combined effects of water and nitrogen on the relationship between a native hemiparasite and its invasive host.
Stem hemiparasites are dependent on their hosts for water and nitrogen. Most studies, however, assess the influence of one factor on parasite:host associations, thus limiting our mechanistic understanding of their performance in nature. We investigated the combined effects of water and nitrogen (N) availability on both host (Ulex europaeus) and parasite (Cassytha pubescens). Parasite infection significantly decreased host shoot biomass and shoot:root ratio more severely in high water than low water, irrespective of N supply. Parasite stem [N] was significantly higher in high water than low water treatments, regardless of N supply, but parasite biomass didn't vary among treatments. Irrespective of water and N supply, infected plants had significantly lower total, root and nodule biomass, predawn and midday quantum yields, maximum electron transport rates, water potentials and nitrogen concentration [N]. Parasite δ13 C was significantly higher than that of the host. Our results suggest that stem hemiparasites can better extract resources from hosts when water availability is high, resulting in greater impact on the host in these conditions. Where hemiparasitic plants are being investigated as biocontrol for invasive weeds, they may be more effective in wetter habitats than in dry ones
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation
BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation
Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?
Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castillejaoccidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes
One-loop Quantum Gravity in Schwarzschild Spacetime
The quantum theory of linearized perturbations of the gravitational field of
a Schwarzschild black hole is presented. The fundamental operators are seen to
be the perturbed Weyl scalars and associated with the
Newman-Penrose description of the classical theory. Formulae are obtained for
the expectation values of the modulus squared of these operators in the
Boulware, Unruh and Hartle-Hawking quantum states. Differences between the
renormalized expectation values of both and
in the three quantum states are evaluated
numerically.Comment: 39 pages, 11 Postscript figures, using revte
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
Chylous ascites as the main manifestation of left ventricular dysfunction: a case report
BACKGROUND: Ascites is one of the most common complications of liver diseases, even though in 15% of the cases it is related to extrahepatic diseases; 3% are of cardiac nature and they appear associated with signs and symptoms of heart failure. CASE PRESENTATION: A 70 year old man was admitted with more than one year history of abdominal distension and a weight gain of 10 kilograms. He is asymptomatic and walks 2000–3000 meters a day without angor or dyspnea. The physical examination shows moderate abdominal distension, with no hepatosplenomegaly or edema, and there is mild jugular vein distension. The studies performed (complete laboratory work up, paracentesis, liver biopsy, echocardiogram, intrahepatic pressure measurements, etc.) showed a chylous ascites related to portal hypertension, and left ventricular dysfunction was the only probable cause found. CONCLUSION: Asymptomatic heart dysfunction can mimic liver disease and should be kept in mind as a cause of chylous ascites
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
Access to the electron spin is at the heart of many protocols for integrated
and distributed quantum-information processing [1-4]. For instance, interfacing
the spin-state of an electron and a photon can be utilized to perform quantum
gates between photons [2,5] or to entangle remote spin states [6-9].
Ultimately, a quantum network of entangled spins constitutes a new paradigm in
quantum optics [1]. Towards this goal, an integrated spin-photon interface
would be a major leap forward. Here we demonstrate an efficient and optically
programmable interface between the spin of an electron in a quantum dot and
photons in a nanophotonic waveguide. The spin can be deterministically prepared
with a fidelity of 96\%. Subsequently the system is used to implement a
"single-spin photonic switch", where the spin state of the electron directs the
flow of photons through the waveguide. The spin-photon interface may enable
on-chip photon-photon gates [2], single-photon transistors [10], and efficient
photonic cluster state generation [11]
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
- …