73 research outputs found
Social cohesion through football: a quasi-experimental mixed methods design to evaluate a complex health promotion program
Social isolation and disengagement fragments local communities. Evidence indicates that refugee families are highly vulnerable to social isolation in their countries of resettlement. Research to identify approaches to best address this is needed. Football United is a program that aims to foster social inclusion and cohesion in areas with high refugee settlement in New South Wales, Australia, through skills and leadership development, mentoring, and the creation of links with local community and corporate leaders and organisations. The Social Cohesion through Football study’s broad goal is to examine the implementation of a complex health promotion program, and to analyse the processes involved in program implementation. The study will consider program impact on individual health and wellbeing, social inclusion and cohesion, as well as analyse how the program by necessity interacts and adapts to context during implementation, a concept we refer to as plasticity. The proposed study will be the first prospective cohort impact study to our knowledge to assess the impact of a comprehensive integrated program using football as a vehicle for fostering social inclusion and cohesion in communities with high refugee settlement
Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?
Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date
HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV)
is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As
a number of viral proteins Tat is suspected to disturb mitochondrial function.
We prepared pure synthetic full-length Tat by native chemical ligation (NCL),
and Tat peptides, to evaluate their direct effects on isolated mitochondria.
Submicromolar doses of synthetic Tat cause a rapid dissipation of the
mitochondrial transmembrane potential (ΔΨm) as well as
cytochrome c release in mitochondria isolated from mouse liver, heart,
and brain. Accordingly, Tat decreases substrate oxidation by mitochondria
isolated from these tissues, with oxygen uptake being initially restored by
adding cytochrome c. The anion-channel inhibitor
4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects
isolated mitochondria against Tat-induced mitochondrial membrane
permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker,
does not. Pharmacologic inhibitors of the permeability transition pore,
Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce
Tat-induced MMP. We finally observed that Tat inhibits cytochrome c
oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and
brain of both mouse and human samples, making it the first described viral
protein to be a potential COX inhibitor
Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear
Background: Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle.
Methods: Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen.
Results: Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury.
Conclusion: Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus
Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model
Protein synthesis-dependent, late long-term potentiation (LTP) and depression
(LTD) at glutamatergic hippocampal synapses are well characterized examples of
long-term synaptic plasticity. Persistent increased activity of the enzyme
protein kinase M (PKM) is thought essential for maintaining LTP. Additional
spatial and temporal features that govern LTP and LTD induction are embodied in
the synaptic tagging and capture (STC) and cross capture hypotheses. Only
synapses that have been "tagged" by an stimulus sufficient for LTP and learning
can "capture" PKM. A model was developed to simulate the dynamics of key
molecules required for LTP and LTD. The model concisely represents
relationships between tagging, capture, LTD, and LTP maintenance. The model
successfully simulated LTP maintained by persistent synaptic PKM, STC, LTD, and
cross capture, and makes testable predictions concerning the dynamics of PKM.
The maintenance of LTP, and consequently of at least some forms of long-term
memory, is predicted to require continual positive feedback in which PKM
enhances its own synthesis only at potentiated synapses. This feedback
underlies bistability in the activity of PKM. Second, cross capture requires
the induction of LTD to induce dendritic PKM synthesis, although this may
require tagging of a nearby synapse for LTP. The model also simulates the
effects of PKM inhibition, and makes additional predictions for the dynamics of
CaM kinases. Experiments testing the above predictions would significantly
advance the understanding of memory maintenance.Comment: v3. Minor text edits to reflect published versio
Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the “intrinsic reactivity” of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant (“Tier 2-like”) viruses, globally sensitive (“Tier 1”) viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4
Mechanisms of HIV-associated lymphocyte apoptosis: 2010
The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection
Synthetic Biology: Mapping the Scientific Landscape
This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves
Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury
- …
