451 research outputs found
Causal Fermion Systems: A Quantum Space-Time Emerging from an Action Principle
Causal fermion systems are introduced as a general mathematical framework for
formulating relativistic quantum theory. By specializing, we recover earlier
notions like fermion systems in discrete space-time, the fermionic projector
and causal variational principles. We review how an effect of spontaneous
structure formation gives rise to a topology and a causal structure in
space-time. Moreover, we outline how to construct a spin connection and
curvature, leading to a proposal for a "quantum geometry" in the Lorentzian
setting. We review recent numerical and analytical results on the support of
minimizers of causal variational principles which reveal a "quantization
effect" resulting in a discreteness of space-time. A brief survey is given on
the correspondence to quantum field theory and gauge theories.Comment: 23 pages, LaTeX, 2 figures, footnote added on page
P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5.
Invasion of erythrocytes by Plasmodium falciparum merozoites is necessary for malaria pathogenesis and is therefore a primary target for vaccine development. RH5 is a leading subunit vaccine candidate because anti-RH5 antibodies inhibit parasite growth and the interaction with its erythrocyte receptor basigin is essential for invasion. RH5 is secreted, complexes with other parasite proteins including CyRPA and RIPR, and contains a conserved N-terminal region (RH5Nt) of unknown function that is cleaved from the native protein. Here, we identify P113 as a merozoite surface protein that directly interacts with RH5Nt. Using recombinant proteins and a sensitive protein interaction assay, we establish the binding interdependencies of all the other known RH5 complex components and conclude that the RH5Nt-P113 interaction provides a releasable mechanism for anchoring RH5 to the merozoite surface. We exploit these findings to design a chemically synthesized peptide corresponding to RH5Nt, which could contribute to a cost-effective malaria vaccine
Changes in Parasite Virulence Induced by the Disruption of a Single Member of the 235 kDa Rhoptry Protein Multigene Family of Plasmodium yoelii
Invasion of the erythrocyte by the merozoites of the malaria parasite is a
complex process involving a range of receptor-ligand interactions. Two protein
families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding
Protein Homologues (RH) play an important role in host cell recognition by the
merozoite. In the rodent malaria parasite, Plasmodium yoelii,
the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are
members of the RH. In P. yoelii Py235 as well as a single
member of EBL have been shown to be key mediators of virulence enabling the
parasite to invade a wider range of host erythrocytes. One member of Py235,
PY01365 is most abundantly transcribed in parasite
populations and the protein specifically binds to erythrocytes and is recognized
by the protective monoclonal antibody 25.77, suggesting a key role of this
particular member in virulence. Recent studies have indicated that overall
levels of Py235 expression are essential for parasite virulence. Here we show
that disruption of PY01365 in the virulent YM line directly
impacts parasite virulence. Furthermore the disruption of
PY01365 leads to a reduction in the number of schizonts
that express members of Py235 that react specifically with the mcAb 25.77.
Erythrocyte binding assays show reduced binding of Py235 to red blood cells in
the PY01365 knockout parasite as compared to YM. While our
results identify PY01365 as a mediator of parasite virulence,
they also confirm that other members of Py235 are able to substitute for
PY01365
Global Diversity Hotspots and Conservation Priorities for Sharks
Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with low resilience to fishing pressure have resulted in population declines worldwide. Designing conservation strategies for this group depends on basic knowledge of the geographic distribution and diversity of known species. So far, this information has been fragmented and incomplete. Here, we have synthesized the first global shark diversity pattern from a new database of published sources, including all 507 species described at present, and have identified hotspots of shark species richness, functional diversity and endemicity from these data. We have evaluated the congruence of these diversity measures and demonstrate their potential use in setting priority areas for shark conservation. Our results show that shark diversity across all species peaks on the continental shelves and at mid-latitudes (30β40 degrees N and S). Global hotspots of species richness, functional diversity and endemicity were found off Japan, Taiwan, the East and West coasts of Australia, Southeast Africa, Southeast Brazil and Southeast USA. Moreover, some areas with low to moderate species richness such as Southern Australia, Angola, North Chile and Western Continental Europe stood out as places of high functional diversity. Finally, species affected by shark finning showed different patterns of diversity, with peaks closer to the Equator and a more oceanic distribution overall. Our results show that the global pattern of shark diversity is uniquely different from land, and other well-studied marine taxa, and may provide guidance for spatial approaches to shark conservation. However, similar to terrestrial ecosystems, protected areas based on hotspots of diversity and endemism alone would provide insufficient means for safeguarding the diverse functional roles that sharks play in marine ecosystems
How Do Police Respond to Stalking? An Examination of the Risk Management Strategies and Tactics Used in a Specialized Anti-Stalking Law Enforcement Unit
How do police respond to and manage complaints of stalking? To answer this question, we conducted a 3-phase study. First, we reviewed the literature to identify risk management tactics used to combat stalking. Second, we asked a group of police officers to review those tactics for completeness and group them into categories reflecting more general risk management strategies. The result was 22 categories of strategies. Finally, we used qualitative methods to evaluate the files of 32 cases referred to the specialized anti-stalking unit of a metropolitan police department. We coded specific risk management tactics and strategies used by police. Results indicated that a median number of 19 specific tactics from 7 general strategies were used to manage risk. Also, the implementation of strategies and tactics reflected specific characteristics of the cases (e.g., perpetrator risk factors, victim vulnerability factors), suggesting that the risk management decisions made by police were indeed strategic in nature. Qualitative analyses indicated that some of the strategies and tactics were more effective than others. We discuss how these findings can be used to understand and use stalking risk management more generally, as well as improve research on the efficacy of risk assessment and management for stalking
Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with complex genetic inheritance. Recently, single nucleotide polymorphisms (SNPs) in BANK1 and TNFSF4 have been shown to be associated with SLE in Caucasian populations, but it is not known whether they are also involved in the disease in other ethnic groups. Recent data from our genome-wide association study (GWAS) for 314 SLE cases and 920 controls collected in Hong Kong identified SNPs in and around BANK1 and TNFSF4 to be associated with SLE risk. On the basis of the results of the reported studies and our GWAS, SNPs were selected for further genotyping in 949 SLE patients (overlapping with the 314 cases in our GWAS) and non-overlapping 1042 healthy controls. We confirmed the associations of BANK1 and TNFSF4 with SLE in Chinese (BANK1, rs3733197, odds ratio (OR)=0.84, P=0.021; BANK1, rs17266594, OR=0.61, P=4.67 Γ 10β9; TNFSF4, rs844648, OR=1.22, P=2.47 Γ 10β3; TNFSF4, rs2205960, OR=1.30, P=2.41 Γ 10β4). Another SNP located in intron 1 of BANK1, rs4522865, was separately replicated by Sequenom in 360 cases and 360 controls and was also confirmed to be associated with SLE (OR=0.725, P=2.93 Γ 10β3). Logistic regression analysis showed that rs3733197 (A383T in ankyrin domain) and rs17266594 (a branch point-site SNP) from BANK1 had independent contributions towards the disease association (P=0.037 and 6.63 Γ 10β8, respectively). In TNFSF4, rs2205960 was associated with SLE independently from the effect of rs844648 (P=6.26 Γ 10β3), but not vice versa (P=0.55). These findings suggest that multiple independent genetic variants may be present within the gene locus, which exert their effects on SLE pathogenesis through different mechanisms
Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains
Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes
Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans
Centromeres are critically important for chromosome stability and integrity. Most eukaryotes have regional centromeres that include long tracts of repetitive DNA packaged into pericentric heterochromatin. Neocentromeres, new sites of functional kinetochore assembly, can form at ectopic loci because no DNA sequence is strictly required for assembly of a functional kinetochore. In humans, neocentromeres often arise in cells with gross chromosome rearrangements that rescue an acentric chromosome. Here, we studied the properties of centromeres in Candida albicans, the most prevalent fungal pathogen of humans, which has small regional centromeres that lack pericentric heterochromatin. We functionally delimited centromere DNA on Chromosome 5 (CEN5) and then replaced the entire region with the counter-selectable URA3 gene or other marker genes. All of the resulting cen5Ξ::URA3 transformants stably retained both copies of Chr5, indicating that a functional neocentromere had assembled efficiently on the homolog lacking CEN5 DNA. Strains selected to maintain only the cen5Ξ::URA3 homolog and no wild-type Chr5 homolog also grew well, indicating that neocentromere function is independent of the presence of any wild-type CEN5 DNA. Two classes of neocentromere (neoCEN) strains were distinguishable: βproximal neoCENβ and βdistal neoCENβ strains. Neocentromeres in the distal neoCEN strains formed at loci about 200β450 kb from cen5Ξ::URA3 on either chromosome arm, as detected by massively parallel sequencing of DNA isolated by CENP-ACse4p chromatin immunoprecipitation (ChIP). In the proximal neoCEN strains, the neocentromeres formed directly adjacent to cen5Ξ::URA3 and moved onto the URA3 DNA, resulting in silencing of its expression. Functional neocentromeres form efficiently at several possible loci that share properties of low gene density and flanking repeated DNA sequences. Subsequently, neocentromeres can move locally, which can be detected by silencing of an adjacent URA3 gene, or can relocate to entirely different regions of the chromosome. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere
- β¦