Causal fermion systems are introduced as a general mathematical framework for
formulating relativistic quantum theory. By specializing, we recover earlier
notions like fermion systems in discrete space-time, the fermionic projector
and causal variational principles. We review how an effect of spontaneous
structure formation gives rise to a topology and a causal structure in
space-time. Moreover, we outline how to construct a spin connection and
curvature, leading to a proposal for a "quantum geometry" in the Lorentzian
setting. We review recent numerical and analytical results on the support of
minimizers of causal variational principles which reveal a "quantization
effect" resulting in a discreteness of space-time. A brief survey is given on
the correspondence to quantum field theory and gauge theories.Comment: 23 pages, LaTeX, 2 figures, footnote added on page