47 research outputs found

    Photonic quantum error correction of linear optics using W-state encoding

    Full text link
    Error-detection and correction are necessary prerequisites for any scalable quantum computing architecture. Given the inevitability of unwanted physical noise in quantum systems and the propensity for errors to spread as computations proceed, computational outcomes can become substantially corrupted. This observation applies regardless of the choice of physical implementation. In the context of photonic quantum information processing, there has recently been much interest in passive linear optics quantum computing, which includes boson-sampling, as this model eliminates the highly-challenging requirements for feed-forward via fast, active control. That is, these systems are passive by definition. In usual scenarios, error detection and correction techniques are inherently active, making them incompatible with this model, arousing suspicion that physical error processes may be an insurmountable obstacle. Here we explore a photonic error-detection technique, based on W-state encoding of photonic qubits, which is entirely passive, based on post-selection, and compatible with these near-term photonic architectures of interest. We show that this W-state redundant encoding techniques enables the suppression of dephasing noise on photonic qubits via simple fan-out style operations, implemented by optical Fourier transform networks, which can be readily realised today. The protocol effectively maps dephasing noise into heralding failures, with zero failure probability in the ideal no-noise limit

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    The sleep EEG spectrum is a sexually dimorphic marker of general intelligence

    Get PDF
    The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual “EEG fingerprint”. Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like “REM beta tufts” are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep

    Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis

    Get PDF
    In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression

    OBILJEŽJA POČINITELJA NASILNIČKIH DELIKATA NA PODRUČJU PRIMORSKO-GORANSKE ŽUPANIJE OBZIROM NA POVRAT

    Get PDF
    Availability of sophisticated statistical modelling for developing robust reference equations has improved interpretation of lung function results. In 2012, the Global Lung function Initiative(GLI) published the first global all-age, multi-ethnic reference equations for spirometry but these lacked equations for those originating from the Indian subcontinent (South-Asians). The aims of this study were to assess the extent to which existing GLI-ethnic adjustments might fit South-Asian paediatric spirometry data, assess any similarities and discrepancies between South-Asian datasets and explore the feasibility of deriving a suitable South-Asian GLI-adjustment. Methods: Spirometry datasets from South-Asian children were collated from four centres in India and five within the UK. Records with transcription errors, missing values for height or spirometry, and implausible values were excluded(n=110). Results: Following exclusions, cross-sectional data were available from 8,124 children (56.3% male; 5-17 years). When compared with GLI-predicted values from White Europeans, forced expired volume in 1s (FEV1) and forced vital capacity (FVC) in South-Asian children were on average 15% lower, ranging from 4-19% between centres. By contrast, proportional reductions in FEV1 and FVC within all but two datasets meant that the FEV1/FVC ratio remained independent of ethnicity. The ‘GLI-Other’ equation fitted data from North India reasonably well while ‘GLI-Black’ equations provided a better approximation for South-Asian data than the ‘GLI-White’ equation. However, marked discrepancies in the mean lung function z-scores between centres especially when examined according to socio-economic conditions precluded derivation of a single South-Asian GLI-adjustment. Conclusion: Until improved and more robust prediction equations can be derived, we recommend the use of ‘GLI-Black’ equations for interpreting most South-Asian data, although ‘GLI-Other’ may be more appropriate for North Indian data. Prospective data collection using standardised protocols to explore potential sources of variation due to socio-economic circumstances, secular changes in growth/predictors of lung function and ethnicities within the South-Asian classification are urgently required

    Multiple cargo deliveries of growth factors and antimicrobial peptide using biodegradable nanopolymer as a potential wound healing system

    No full text
    Amritha Vijayan, Pinky Prabha James, CK Nanditha, GS Vinod Kumar Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India Background: Treatment of wounds with the help of nanoparticles (NPs) is more effective and superior in comparison to traditional wound healing methods as it protects and sustains active drug release at the wound site thus enhancing the safety of the drug and reducing the possibility of side effects. The advantages of this method are the possibility of allowing a reduction in administered dose, limiting toxicity levels to the minimum, and increasing safety of topical delivery of the drug.Materials and methods: We report the synthesis of a novel poly (lactic-co-glycolic acid) (PLGA) NP-based multicargo delivery system for growth factors and antimicrobial peptide. Growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were entrapped in PLGA NPs by solvent diffusion method and an antimicrobial peptide (K4) was conjugated to the NP by carbodiimide chemistry. The developed multiple cargo delivery systems with growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) were investigated and optimized for potential wound healing.Results: The system showed a sustained release of growth factors and was evaluated for cytotoxicity by MTT and live/dead assay, which revealed that the bioactivity of the growth factor-entrapped NPs was higher than that of free growth factors, and it also induced enhanced cell proliferation in vitro.Conclusion: The development of a system for the codelivery of growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) was investigated for potential wound healing application. The entrapment of growth factors with very high efficiency is an advantage in this method along with its sustained release from the nanoparticulate system, which will enhance the angiogenesis. Our system also displayed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria. Keywords: growth factors, VEGF, bFGF, PLGA, antimicrobial peptide

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore