96 research outputs found

    A Light Stop with Flavor in Natural SUSY

    Full text link
    The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model - including the full dynamics of the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma} constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h-> b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde

    Excess Higgs Production in Neutralino Decays

    Full text link
    The ATLAS and CMS experiments have recently claimed discovery of a Higgs boson-like particle at ~5 sigma confidence and are beginning to test the Standard Model predictions for its production and decay. In a variety of supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and the LSP. In natural SUSY models, a light third generation squark decaying through this chain can lead to large excess Higgs production while evading existing BSM searches. Such models can be observed at the 8 TeV LHC in channels exploiting the rare diphoton decays of the Higgs produced in the cascade decay. Identifying a diphoton resonance in association with missing energy, a lepton, or b-tagged jets is a promising search strategy for discovery of these models, and would immediately signal new physics involving production of a Higgs boson. We also discuss the possibility that excess Higgs production in these SUSY decays can be responsible for enhancements of up to 50% over the SM prediction for the observed rate in the existing inclusive diphoton searches, a scenario which would likely by the end of the 8 TeV run be accompanied by excesses in the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure

    Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    Get PDF
    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the species were susceptible to Deltamethrin. Larvae of both the Anopheline species showed some evidence of resistance to chlorpyriphos followed by fenthion whereas susceptible to temephos and malathion

    Development and evaluation of real time RT-PCR assays for detection and typing of Bluetongue virus

    Get PDF
    Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures

    Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>N</it>-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model.</p> <p>Methods</p> <p>CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling.</p> <p>Results</p> <p>No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells.</p> <p>Conclusions</p> <p>In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.</p

    Fitting the Higgs to natural SUSY

    Get PDF
    We present a fit to the 2012 LHC Higgs data in different supersymmetric frameworks using naturalness as a guiding principle. We consider the MSSM and its D-term and F -term extensions that can raise the tree-level Higgs mass. When adding an extra chiral superfield to the MSSM, three parameters are needed determine the tree-level couplings of the lightest Higgs. Two more parameters cover the most relevant loop corrections, that affect the hγγ and hgg vertexes. Motivated by this consideration, we present the results of a five parameters fit encompassing a vast class of complete supersymmetric theories. We find meaningful bounds on singlet mixing and on the mass of the pseudoscalar Higgs m [subscript A] as a function of tan β in the MSSM. We show that in the (m [subscript A] , tan β) plane, Higgs couplings measurements are probing areas of parameter space currently inaccessible to direct searches. We also consider separately the two cases in which only loop effects or only tree-level effects are sizable. In the former case we study in detail stops’ and charginos’ contributions to Higgs couplings, while in the latter we show that the data point to the decoupling limit of the Higgs sector. In a particular realization of the decoupling limit, with an approximate PQ symmetry, we obtain constraints on the heavy scalar Higgs mass in a general type-II Two Higgs Doublet Model

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children
    corecore