64 research outputs found

    Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    Get PDF
    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens

    The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history.

    No full text
    International audienceWhile bacterial spores are mostly produced in a continuous process, this study reports a two-step sporulation methodology. Even though spore heat resistance of numerous spore-forming bacteria is known to be dependent on sporulation conditions, this approach enables the distinction between the vegetative cell growth phase in nutrient broth and the sporulation phase in specific buffer. This study aims at investigating whether the conditions of growth of the vegetative cells, prior to sporulation, could affect spore heat resistance. For that purpose, wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores, produced via a two-step sporulation process, was determined from vegetative cells harvested at four different stages of the growth kinetics, i.e. early exponential phase, late exponential phase, transition phase or early stationary phase. To assess the impact of the temperature on spore heat resistance, sporulation was performed at 10 °C, 20 °C and 30 °C from cells grown during a continuous or a discontinuous temperature process, differentiating or not the growth and sporulation temperatures. Induction of sporulation seems possible for a large range of growth stages. Final spore concentration was not significantly affected by the vegetative cell growth stage while it was by the temperature during growing and sporulation steps. The sporulation temperature influences the heat resistance of B. weihenstephanensis KBAB4 spores much more than growth temperature prior to sporulation. Spores produced at 10 °C were up to 3 times less heat resistant than spores produced at 30 °C

    Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs - a microcalorimetric study

    No full text
    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal reaction calorimetry can be employed to determine the enthalpy of coaggregation between two oral bacterial pairs. For most biological processes, the enthalpy tends to reach a minimum value, reflecting the most stable state, which is directly related to the heat content of the system. The calorimeter consists of four measuring units where reaction ampoules are filled with 1.5 ml of an Actinomyces naeslundii 147 suspension, while reference ampoules are filled with buffer only. After equilibration at 25 °C, 80 µl of a streptococcal suspension was titrated into the reaction ampoules. To study possible saturation of the binding sites on the actinomyces surface, three consecutive injections with streptococcal suspensions were done. Following each injection, a 20-µl aliquot was taken from the ampoule kept outside the calorimeter and the number of free (Sf) and bound (Sb) streptococci was determined microscopically. Experiments were carried out with a coaggregating streptococcal strain (Streptococcus oralis J22) and a non-coaggregating strain (Streptococcus sanguis PK1889), serving as a control. The coaggregation enthalpy was exothermic, that is, heat was released in the reaction ampoule upon coaggregation and the heat released by the coaggregating pair minus the heat released by the non-coaggregating pair yielded a coaggregation enthalpy of -0.015×10-6 mJ/bound streptococcus for the first injection. Upon consecutive injections, the coaggregation enthalpy decreased to -0.0004×10-6 mJ/bound streptococcus. Comparison with enthalpy changes reported for lectin–carbohydrate binding suggests that a huge number of binding sites are involved in the formation of one bacterial coaggregate

    Enthalpy of interaction between coaggregating and non-coaggregating oral bacterials pairs - a microcalorimetric study

    No full text
    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal reaction calorimetry can be employed to determine the enthalpy of coaggregation between two oral bacterial pairs. For most biological processes, the enthalpy tends to reach a minimum value, reflecting the most stable state, which is directly related to the heat content of the system. The calorimeter consists of four measuring units where reaction ampoules are filled with 1.5 ml of an Actinomyces naeslundii 147 suspension, while reference ampoules are filled with buffer only. After equilibration at 25 °C, 80 µl of a streptococcal suspension was titrated into the reaction ampoules. To study possible saturation of the binding sites on the actinomyces surface, three consecutive injections with streptococcal suspensions were done. Following each injection, a 20-µl aliquot was taken from the ampoule kept outside the calorimeter and the number of free (Sf) and bound (Sb) streptococci was determined microscopically. Experiments were carried out with a coaggregating streptococcal strain (Streptococcus oralis J22) and a non-coaggregating strain (Streptococcus sanguis PK1889), serving as a control. The coaggregation enthalpy was exothermic, that is, heat was released in the reaction ampoule upon coaggregation and the heat released by the coaggregating pair minus the heat released by the non-coaggregating pair yielded a coaggregation enthalpy of -0.015×10-6 mJ/bound streptococcus for the first injection. Upon consecutive injections, the coaggregation enthalpy decreased to -0.0004×10-6 mJ/bound streptococcus. Comparison with enthalpy changes reported for lectin–carbohydrate binding suggests that a huge number of binding sites are involved in the formation of one bacterial coaggregate

    Prediction of Bacillus weihenstephanensis acid resistance: The use of gene expression patterns to select potential biomarkers

    No full text
    Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour. Keywords: Bacillus; Acid resistance; Gene expression; Modelling; Biomarker; Food safet

    Irradiation effects on antibody performance in the frame of biochip-based instruments development for space exploration

    No full text
    Several instruments based on immunoassay techniques have been proposed for life-detection experiments in the framework of planetary exploration but few experiments have been conducted so far to test the resistance of antibodies against cosmic ray particles. We present several irradiation experiments carried out on both grafted and free antibodies for different types of incident particles (protons, neutrons, electrons and 12C) at different energies (between 9 MeV and 50 MeV) and different fluences. No loss of antibodies activity was detected for the whole set of experiments except when considering protons with energy between 20 and 30 MeV (on free and grafted antibodies) and fluences much greater than expected for a typical planetary mission to Mars for instance. Our results on grafted antibodies suggest that biochip-based instruments must be carefully designed according to the expected radiation environment for a given mission. In particular, a surface density of antibodies much larger than the expected proton fluence would prevent significant loss of antibodies activity and thus assuring a successful detection

    Path-dependency of the interaction between coaggregating and between non-coaggregating oral bacterial pairs - a thermodynamic approach

    No full text
    Coaggregation, i.e. specific recognition between bacteria from different species, is a well-described phenomenon in the human oral cavity but remains physically poorly understood. With our study we aimed at elucidating some aspects of the mechanism of the coaggregation between the oral bacteria Streptococcus oralis J22 and Actinomyces naeslundii 147, in particular with respect to the driving force for coaggregation and its pathway-dependency. To that end, the macroscopic turbidity of the bacterial suspension, the morphology of the coaggregates, binding isotherms and heats of interaction were compared between the above-mentioned coaggregating bacterial pair and a non-coaggregating pair, Streptococcus sanguis PK1889 and A. naeslundii 147. The coaggregating pair forms large aggregates, which rapidly sediment from the suspension while the non-coaggregating pair forms only very small coaggregates that remain homogeneously suspended. Coaggregation is further characterized by a high affinity between the partner cells that bind to each other in a strong cooperative mode. The interactions between both pairs occur under the release of heat and are thus enthalpically favorable. More heat is released for the coaggregating than for the non-coaggregating pair. Adding the coaggregating bacteria in steps to each other leads to saturation of enthalpically favorable binding sites. This is observed when the streptococcus is added to the actinomyces as well as when the addition is done the other way around. It is concluded that the cooperativity of the coaggregation process is based on an increase of entropy. It is furthermore shown that the density of the coaggregates as well as the heat effect of formation of these coaggregates depend on the number of steps in which the partner cells are added to each other. Adding S. oralis J22 in three steps to A. naeslundii 147 results in the formation of denser coaggregates under the release of less heat, as compared to that of addition in one step. These differences point to a larger entropy increase when in a step-wise mixing the coaggregating bacteria are allowed to form more densely-packed coaggregates. (C) 2004 Elsevier B.V. All rights reserved
    • …
    corecore