3,382 research outputs found
Multiple human herpesvirus-8 infection
In Malawian patients with Kaposi sarcoma (KS) and their relatives, we investigated nucleotide-sequence variation in human herpesvirus-8 (HHV-8) subgenomic DNA, amplified from oral and blood samples by use of polymerase chain reaction. Twenty-four people had amplifiable HHV-8 DNA in >1 sample; 9 (38%) were seropositive for human immunodeficiency virus type 1, 21 (88%) were anti-HHV-8-seropositive, and 7 (29%) had KS. Sequence variation was sought in 3 loci of the HHV-8 genome: the internal repeat domain of open-reading frame (ORF) 73, the KS330 segment of ORF 26, and variable region 1 of ORF K1. Significant intraperson/intersample and intrasample sequence polymorphisms were observed in 14 people (60%). For 3 patients with KS, intraperson genotypic differences, arising from nucleotide sequence variations in ORFs 26 and K1, were found in blood and oral samples. For 2 other patients with KS and for 9 people without KS, intraperson genotypic and subgenotypic differences, originating predominantly from ORF K1, were found in oral samples; for the 2 patients with KS and for 4 individuals without KS, intrasample carriage of distinct ORF K1 sequences also were discernible. Our findings imply HHV-8 superinfection
Recommended from our members
Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.
A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations
Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes
Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus–smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus–smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs −112 and −106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus–smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus–smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types
What Evidence Is There for the Homology of Protein-Protein Interactions?
The notion that sequence homology implies functional similarity underlies much of computational biology. In the case of protein-protein interactions, an interaction can be inferred between two proteins on the basis that sequence-similar proteins have been observed to interact. The use of transferred interactions is common, but the legitimacy of such inferred interactions is not clear. Here we investigate transferred interactions and whether data incompleteness explains the lack of evidence found for them. Using definitions of homology associated with functional annotation transfer, we estimate that conservation rates of interactions are low even after taking interactome incompleteness into account. For example, at a blastp -value threshold of , we estimate the conservation rate to be about between S. cerevisiae and H. sapiens. Our method also produces estimates of interactome sizes (which are similar to those previously proposed). Using our estimates of interaction conservation we estimate the rate at which protein-protein interactions are lost across species. To our knowledge, this is the first such study based on large-scale data. Previous work has suggested that interactions transferred within species are more reliable than interactions transferred across species. By controlling for factors that are specific to within-species interaction prediction, we propose that the transfer of interactions within species might be less reliable than transfers between species. Protein-protein interactions appear to be very rarely conserved unless very high sequence similarity is observed. Consequently, inferred interactions should be used with care
Comments on a class of orthogonality relations relevant to fluid-structure interaction
Copyright @ 2011 Springer Science+Business Media B.V
L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles
The blood–brain barrier (BBB) is a protective endothelial barrier lining the brain microvasculature which prevents brain delivery of therapies against brain diseases. Hence, there is an urgent need to develop vehicles which efficiently penetrate the BBB to deliver therapies into the brain. The drug L-DOPA efficiently and specifically crosses the BBB via the large neutral amino acid transporter (LAT)-1 protein to enter the brain. Thus, we synthesized L-DOPA-functionalized multi-branched nanoflower-like gold nanoparticles (L-DOPA-AuNFs) using a seed-mediated method involving catechols as a direct reducing-cum-capping agent, and examined their ability to cross the BBB to act as brain-penetrating nanovehicles. We show that L-DOPA-AuNFs efficiently penetrate the BBB compared to similarly sized and shaped AuNFs functionalized with a non-targeting ligand. Furthermore, we show that L-DOPA-AuNFs are efficiently internalized by brain macrophages without inducing inflammation. These results demonstrate the application of L-DOPA-AuNFs as a non-inflammatory BBB-penetrating nanovehicle to efficiently deliver therapies into the brain
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications
Reverse osmosis membranes are used within the oil and gas industry for sea water desalination on off-shore oilrigs. The membranes consist of three layers of material – a polyester backing layer, a polysulfone support and a polyamide (PA) thin film separating layer. It is generally thought that the PA layer controls ion selectivity within the membrane, but little is understood about its structure or chemistry at the molecular scale. This active polyamide layer is synthesized by interfacial polymerisation at an organic/aqueous interface between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), producing a highly cross-linked polyamide (PA) polymer. It has been speculated that the distribution of functional chemistry within this layer could play a role in solute filtration. The only technique potentially capable of probing the distribution of functional chemistry within the active PA layer with sufficient spatial and energy resolution is scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS). Its use is a challenge because organic materials suffer beam-induced damage at relatively modest electron doses. Here we show that it is possible to use the N K-edge to map the active layer of a PA film using monochromated EELS spectrum imaging. The active PA layer is 12 nm thick, which supports previous neutron reflectivity data. Clear changes in the fine structure of the C K-edge across the PA films are measured and we use machine learning to assign fine structure at this edge. Using this method, we map highly heterogeneous intensity variations in functional chemistry attributed to N-C=C bonds within the PA. Similarities are found with previous molecular dynamics simulations of PA showing regions with a higher density of amide bonding as a result of the aggregation process at similar length scales. The chemical pathways that can be deduced may offer a clearer understanding of the transport mechanisms through the membrane
Understanding innovators' experiences of barriers and facilitators in implementation and diffusion of healthcare service innovations: A qualitative study
This article is made available through the Brunel Open Access Publishing Fund - Copyright @ 2011 Barnett et al.Background: Healthcare service innovations are considered to play a pivotal role in improving organisational efficiency and responding effectively to healthcare needs. Nevertheless, healthcare organisations encounter major difficulties in sustaining and diffusing innovations, especially those which concern the organisation and delivery of healthcare services. The purpose of the present study was to explore how healthcare innovators of process-based initiatives perceived and made sense of factors that either facilitated or obstructed the innovation implementation and diffusion. Methods: A qualitative study was designed. Fifteen primary and secondary healthcare organisations in the UK, which had received health service awards for successfully generating and implementing service innovations, were studied. In-depth, semi structured interviews were conducted with the organisational representatives who conceived and led the development process. The data were recorded, transcribed and thematically analysed. Results: Four main themes were identified in the analysis of the data: the role of evidence, the function of inter-organisational partnerships, the influence of human-based resources, and the impact of contextual factors. "Hard" evidence operated as a proof of effectiveness, a means of dissemination and a pre-requisite for the initiation of innovation. Inter-organisational partnerships and people-based resources, such as champions, were considered an integral part of the process of developing, establishing and diffusing the innovations. Finally, contextual influences, both intra-organisational and extra-organisational were seen as critical in either impeding or facilitating innovators' efforts. Conclusions: A range of factors of different combinations and co-occurrence were pointed out by the innovators as they were reflecting on their experiences of implementing, stabilising and diffusing novel service initiatives. Even though the innovations studied were of various contents and originated from diverse organisational contexts, innovators' accounts converged to the significant role of the evidential base of success, the inter-personal and inter-organisational networks, and the inner and outer context. The innovators, operating themselves as important champions and being often willing to lead constructive efforts of implementation to different contexts, can contribute to the promulgation and spread of the novelties significantly.This research was supported financially by the Multidisciplinary Assessment of
Technology Centre for Healthcare (MATCH)
The Phyre2 web portal for protein modeling, prediction and analysis
Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission
- …